
ABC

PLOP and PLOP DS
Version 5.4

PDF Linearization, Optimization,
Protection and Digital Signature

Copyright © 1997–2020 PDFlib GmbH. All rights reserved.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

If you have questions check the PDFlib mailing list at
groups.yahoo.com/neo/groups/pdflib/info

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

PDFlib PLOP and PLOP DS contain modified parts of the following third-party software:
ICClib, Copyright © 1997-2002 Graeme W. Gill
Zlib compression library, Copyright © 1995-2017 Jean-loup Gailly and Mark Adler
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)
Independent JPEG Group’s JPEG software, Copyright © 1991-2017, Thomas G. Lane, Guido Vollbeding
OpenSSL Cryptographic Library, Copyright © 1998-2018 The OpenSSL Project (www.openssl.org)
Expat XML parser, Copyright © 2001-2017 Expat maintainers
ICU International Components for Unicode, Copyright © 1995-2012 International Business Machines Corpo-
ration and others
Curl multiprotocol file transfer library, Copyright © 1996-2018, Daniel Stenberg (daniel@haxx.se)
OpenJPEG library, Copyright © 2012, CS Systemes d’Information, France

PDFlib PLOP and PLOP DS contain the RSA Security, Inc. MD5 message digest algorithm.

http://www.pdflib.com
https://groups.yahoo.com/neo/groups/pdflib/info
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 First Steps with PLOP and PLOP DS 7

0.1 Installing the Software 7

0.2 Applying the PLOP/PLOP DS License Key 9

0.3 Roadmap to Documentation and Samples 12

0.4 Overview of PLOP and PLOP DS 13

0.5 What’s new in PLOP and PLOP DS? 15

1 PLOP Features 17

1.1 Password Security and Permissions 17

1.2 Certificate Security 18

1.3 Web-Optimized (Linearized) PDF 19

1.4 Optimization (Size Reduction) 20

1.5 Repair Mode for Damaged PDF 21

1.6 Query Document Information with pCOS 22

1.7 Inserting and Reading Document Info Entries 24

1.8 Inserting, Reading, or Removing XMP Metadata 25

1.9 PLOP Processing Details 27

2 PLOP DS Features (Digital Signature) 31

2.1 Signature Features in PLOP DS 31

2.2 Preparations for PLOP DS Evaluation 33

2.3 Signing Documents with PLOP DS 33

2.4 Certification Signatures 34

2.5 Timestamps 34

2.6 LTV-enabled Signatures 35

2.7 PAdES Signatures 35

2.8 Visualize Digital Signatures 36

2.9 Query Digital Signatures 36

3 PLOP and PLOP DS Command-line Tool 39

3.1 PLOP and PLOP DS Command-line Options 39

3.2 PLOP and PLOP DS Command-line Examples 43

4 PLOP and PLOP DS Library Language Bindings 45

4.1 C Binding 45

4.2 C++ Binding 47

4 Contents

4.3 Java Binding 49

4.4 .NET Binding 51
4.4.1 .NET Binding Variants 51
4.4.2 .NET Core Binding 51
4.4.3 Classic .NET Binding 52
4.4.4 Using the .NET Binding in Applications 53

4.5 Objective-C Binding 54

4.6 Perl Binding 56

4.7 PHP Binding 57

4.8 Python Binding 59

4.9 Ruby Binding 60

5 Password Security 61

5.1 Password Security in PDF 61

5.2 Password-protecting PDF Documents with PLOP 65

5.3 Applying Password Security on the Command-Line 68

6 Certificate Security 71

6.1 Certificate Security in Acrobat 71

6.2 Certificate Security in PDF 75
6.2.1 CMS Enveloped Data 75
6.2.2 Cryptographic Details 77

6.3 Use Cases for Certificate Security 79

6.4 Certificate Security with PLOP 80

6.5 Applying Certificate Security on the Command-Line 84

7 Digital Signatures with PLOP DS 87

7.1 Introduction 87
7.1.1 Basic Concepts of Digital Signatures 87
7.1.2 Signatures in Acrobat and PDF 88
7.1.3 Trusted Root Certificates in Acrobat 90

7.2 Signing with PLOP DS 93
7.2.1 Overview 93
7.2.2 Signing with the built-in Engine 94
7.2.3 PKCS#11 Engine for a cryptographic Token 94
7.2.4 PKCS#11 Engine for a Hardware Security Module (HSM) 96
7.2.5 Signing with the MSCAPI Engine on Windows 98
7.2.6 Cryptographic Details 99

7.3 PDF Aspects of Signatures 102
7.3.1 Visualizing Signatures with a Graphic or Logo 102
7.3.2 PDF/A, PDF/UA, PDF/X and PDF/VT Conformance 104
7.3.3 Document Security Store (DSS) 107

Contents 5

7.3.4 Signatures and incremental PDF Updates 107
7.3.5 Combining Encryption with Signatures 109
7.3.6 Certification Signatures 109

7.4 Certificate Revocation Information 112
7.4.1 Online Certificate Status Protocol (OCSP) 112
7.4.2 Certificate Revocation Lists (CRLs) 114
7.4.3 OCSP or CRL? 116

7.5 Timestamps 118
7.5.1 Timestamp Configuration 118
7.5.2 Timestamped Signatures 119
7.5.3 Document-Level Timestamp Signatures 120
7.5.4 Troubleshooting and Unsupported TSA Types 121

7.6 Long-Term Validation (LTV) 124
7.6.1 LTV Concept and Acrobat Support 124
7.6.2 LTV-enabled Signatures with PLOP DS 125

7.7 The CAdES and PAdES Signature Standards 129
7.7.1 CMS and CAdES Signatures 129
7.7.2 PAdES Signatures with PLOP DS 132

8 PLOP and PLOP DS Library API Reference 135

8.1 Option Lists 135

8.2 General Functions 138

8.3 Input Functions 141

8.4 Output Functions 145

8.5 Certificate Security 150

8.6 Digital Signatures 152

8.7 Exception Handling 163

8.8 Global Options 165

8.9 Logging 167

8.10 pCOS Functions 169

8.11 Unicode Conversion Function 172

A Working with Certificates 175

B Combining PDFlib with PLOP DS 177

C PLOP Library Quick Reference 179

D Revision History 180

Index 181

0.1 Installing the Software 7

0 First Steps with PLOP and PLOP DS

0.1 Installing the Software
PLOP and PLOP DS are delivered as a combined installer package for Windows systems,
and as a combined compressed archive for all other supported operating systems. The
installer and the archive contain the PLOP/PLOP DS command-line tool and the PLOP/
PLOP DS library, plus documentation and examples. After installing or unpacking the
package the following steps are recommended:

> An introduction to the features is available in Chapter 1, »PLOP Features«, page 17,
and Chapter 2, »PLOP DS Features (Digital Signature)«, page 31.

> Users of the PLOP/PLOP DS command-line tool can use the executable right away.
The available options are discussed in Section 3.1, »PLOP and PLOP DS Command-line
Options«, page 39, and are also displayed when you execute the PLOP command-line
tool without any options.

> Users of the PLOP/PLOP DS library/component should read one of the sections in
Chapter 4, »PLOP and PLOP DS Library Language Bindings«, page 45, corresponding to
their environment of choice, and review the installed examples. On Windows the
PLOP and PLOP DS programming examples are accessible via the Start menu (for
.NET) or in the installation directory (for other language bindings).

If you obtained a commercial PLOP or PLOP DS license you must apply your license key
according to the next page.

Restrictions of the evaluation version. The PLOP/PLOP DS command-line tool and li-
brary can be used as fully functional evaluation versions even without a commercial
license. Unlicensed versions of PLOP or PLOP DS must not be used for production pur-
poses, but only for evaluating the product. Deploying the software in a production envi-
ronment requires a valid license.

Unless a valid license key is applied, PLOP includes the text unlicensed in the output
document’s metadata and inserts an extra front page at the beginning of the document.
In order to facilitate testing, no front page is created if one of the following conditions
are true:

> Encryption with the fixed password strings demo or DEMO (options userpassword and
masterpassword).

> Applying a signature with a digital ID where the common name (CN) in the subject
field contains demo or DEMO; suitable digital IDs for testing are included in the
PLOP DS package.

> Protecting a document with certificate security with recipient certificates where the
common name (CN) in the subject field contains demo or DEMO; suitable certificates
for testing are included in the PLOP DS package.

In some situations insertion of the front page may result in PDF output which no longer
conforms to PDF/A, PDF/UA, PDF/VT or PDF/X even if the input conforms to one of
these standards. The non-conformance is specific to the front page and is no longer an
issue once a valid license key is applied.

pCOS functions are restricted to small documents (less than 10 pages and less than
1 MB) in evaluation mode.

8 Chapter 0: First Steps with PLOP and PLOP DS

For each document handle retrieved from plop.open_document(), only a single call to
plop.create_document() call is allowed in evaluation mode.

0.2 Applying the PLOP/PLOP DS License Key 9

0.2 Applying the PLOP/PLOP DS License Key
Using PLOP/PLOP DS for production purposes requires a valid license key. Once you
purchased a license you must apply your license key in order to get rid of the extra front
page and enable the use of arbitrary passwords. There are several methods for applying
the license key; choose one of the methods detailed below.

If the frontpage option for set_option() is false, an exception is thrown instead of cre-
ating the front page when no valid license key could be found.

Note PLOP/PLOP DS license keys are platform-dependent, and can only be used on the platform for
which they have been purchased. While a PLOP DS license key activates all features of PLOP, a
PLOP license key does not activate the signature features which are only available in PLOP DS.

Note A PLOP or PLOP DS license also covers the pCOS command-line tool which is included in all PLOP
packages.

Windows installer. Windows users can enter the license key when they install PLOP/
PLOP DS using the supplied installer. This is the recommended method on Windows. If
you do not have write access to the registry or cannot use the installer refer to one of the
alternate methods below.

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license parameter must be set immedi-
ately after instantiating the PLOP object (i.e., after new() or equivalent call). The exact
syntax depends on your programming language:

> In C++, Java, .NET/C#, Python and Ruby:

plop.set_option("license=...your license key...")

> In C:

PLOP_set_option(p, "license=...your license key...");

> In Perl and PHP:

$plop->set_option("license=...your license key...")

Working with a license file. As an alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PLOP distri-
butions). Lines beginning with a ’#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PLOP 5.4 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt is searched in all default locations (see »Default file search
paths«, page 10).

> You can specify the licensefile parameter with the set_option() API method:

10 Chapter 0: First Steps with PLOP and PLOP DS

plop.set_option("licensefile={/path/to/licensekeys.txt}");

> Use the --plopopt option of the PLOP or pCOS command-line tool and supply the
licensefile option with the name of a license file:

plop --plopopt "licensefile /path/to/your/licensekeys.txt" ...
pcos --plopopt "licensefile /path/to/your/licensekeys.txt" ...

If the path name contains space characters you must enclose the path with braces:

plop --plopopt "licensefile {/path/to/your/license file.txt}" ...
pcos --plopopt "licensefile {/path/to/your/license file.txt}" ...

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables.; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry value:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry values:

HKLM\SOFTWARE\PDFlib\PLOP5\license
HKLM\SOFTWARE\PDFlib\PLOP5\5.4\license

The installer writes the license key to the last of these entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PLOP binaries work with the 64-bit view of the Windows registry, while 32-bit PDFlib binaries
running on a 64-bit system work with the 32-bit view of the registry. If you must add registry
keys for a 32-bit product manually, make sure to use the 32-bit version of the regedit tool. It
can be invoked as follows from the Start dialog:

%systemroot%\syswow64\regedit

Default file search paths. On Unix, Linux and macOS systems some directories will be
searched for files by default even without specifying any path and directory names. The
following directories will be searched:

<rootpath>/PDFlib/PLOP/5.4/resource/cmap
<rootpath>/PDFlib/PLOP/5.4/resource/codelist
<rootpath>/PDFlib/PLOP/5.4/resource/glyphlst
<rootpath>/PDFlib/PLOP/5.4/resource/fonts
<rootpath>/PDFlib/PLOP/5.4/resource/icc
<rootpath>/PDFlib/PLOP/5.4
<rootpath>/PDFlib/PLOP
<rootpath>/PDFlib

On Unix, Linux, and macOS <rootpath> will first be replaced with /usr/local and then
with the HOME directory.

0.2 Applying the PLOP/PLOP DS License Key 11

Default file names for license files. By default, the following file name will be
searched for in the default search path directories:

licensekeys.txt

This feature can be used to work with a license file without setting any environment
variable or runtime option.

12 Chapter 0: First Steps with PLOP and PLOP DS

0.3 Roadmap to Documentation and Samples
Mini samples for PLOP. The PLOP distribution contains simple programming exam-
ples for all supported language bindings. These demonstrate basic PLOP library pro-
gramming tasks:

> The encrypt sample encrypts an unencrypted PDF document with user and master
password.

> The certsec sample encrypts a PDF document against one ore more recipient certifi-
cates. Sample recipient certificates are included in the package. The package also in-
cludes the corresponding digital ID files which are required to decrypt the encrypted
documents with PLOP or open them in Acrobat. The password for all digital ID files
(e.g. demo_recipient_1.p12) is demo.

> The dumper sample uses the pCOS interface to collect general properties, informa-
tion about the encryption and signature status of a document as well as document
information and XMP metadata.

> The insertxmp sample reads XMP metadata from a file, and inserts the XMP in a PDF
document. Sample XMP files are supplied for testing.

Mini samples for PLOP DS. The following mini samples are for use with PLOP DS:
> The sign sample shows how to apply a digital signature to an existing PDF document.
> The multisign sample shows how to apply digital signature to multiple PDF docu-

ments and demonstrates session handling for PKCS#11 tokens.
> The hellosign sample shows how to dynamically create a document with PDFlib in

memory and pass it to PLOP DS, which then applies a digital signature to it. This sam-
ple requires the PDFlib product which is not included in the PLOP package. Free eval-
uation packages for PDFlib are available from our Web site, however.

> The dynamicsign sample shows how to dynamically create a signature visualization
document with PDFlib, e.g. containing a personalized image of a handwritten signa-
ture. This sample also requires the PDFlib product.

The signature samples are prepared to use demo digital IDs which are included in the
package. The password for all digital ID files (e.g. demo_signer_rsa_2048.p12) is demo.

Sample calls of the PLOP command-line tool. The PLOP command-line tool supports
various options which are documented in Section 3.1, »PLOP and PLOP DS Command-
line Options«, page 39. Several other chapters in this manual also contain sample calls
of the PLOP command-line tool.

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is integrated in PLOP and PLOP DS. It is available at the following URL:
www.pdflib.com/pcos-cookbook.

Details of the pCOS interface are documented in the pCOS Path Reference which is
included in the PLOP package.

Sample calls of the pCOS command-line tool. The pCOS command-line tool, which is
included in all PLOP packages, is discussed in a separate manual which also contains
sample calls.

http://www.pdflib.com/pcos-cookbook/

0.4 Overview of PLOP and PLOP DS 13

0.4 Overview of PLOP and PLOP DS
PLOP is available in two flavors: the PLOP base product and the extended version
PLOP DS with support for digital signatures.

PLOP features. PLOP supports the following kinds of PDF processing:
> Password security: encrypt a PDF document with a user or master password (or

both); remove PDF encryption if you know the document’s master password; add or
remove permission settings (e.g., printing or text extraction not allowed) if you
know the document’s master password.

> Certificate security: encrypt a PDF document for one or more recipient certificates;
decrypt protected PDF documents with a suitable digital ID. Apply or remove per-
mission settings for certificate security.

> Linearize PDF documents for enhanced viewer experience when retrieving PDF files
from a Web server.

> Optimize the size of PDF documents by reducing redundant objects.
> Repair damaged PDF documents.
> Use the integrated pCOS interface to query information about the document’s secu-

rity status (encrypted with user or master password), permission settings, document
metadata, and many other properties.

> Insert and retrieve predefined or custom document information entries.
> Insert and retrieve XMP metadata.

PLOP DS features. PLOP DS offers all features of PLOP, plus the ability to apply digital
signatures to PDF documents. The signatures support timestamping, long-term valida-
tion and PAdES signatures. Section 2.1, »Signature Features in PLOP DS«, page 31, pro-
vides a summary of digital signature features in PLOP DS.

Advantages. PDFlib PLOP and PLOP DS offer the following advantages:
> All PLOP and PLOP DS operations are aware of the PDF/A, PDF/UA, PDF/VT and PDF/X

standards: if the input conforms to one of these standards, the output is guaranteed
to conform to the same standard if possible. If this is not possible (e.g. encryption
was requested for PDF/A input) the operation will either be rejected or the standard
identification removed.

> PLOP/PLOP DS is a standalone tool which does not require any third-party software
for reading, encrypting, signing, or writing PDF.

> PLOP/PLOP DS can be deployed on a server, is fully thread-safe, and has been checked
for memory leaks. PLOP has been engineered for heavy server usage, and can be used
in Web server environments, for high-volume batch processing, etc.

> PLOP/PLOP DS is available on many platforms and for several programming envi-
ronments.

> For added flexibility, PLOP/PLOP DS is available both as a command-line tool and a
programming library (component) for various development languages.

14 Chapter 0: First Steps with PLOP and PLOP DS

PLOP/PLOP DS command-line tool or library? PLOP/PLOP DS is available both as a pro-
gramming library (component) for various development languages, and as a command-
line tool for batch operations. Both offer the same feature set, but are suitable for differ-
ent deployment tasks. Here are some guidelines for choosing among the library and the
command-line tool:

> The command-line PLOP/PLOP DS tool is suited for batch processing PDF documents.
It doesn’t require any programming, but offers powerful command-line options
which can be used to integrate it into complex workflows. The PLOP/PLOP DS com-
mand-line tool can also be called from environments which do not support the use
of the library.

> The PLOP/PLOP DS programming library integrates well into a variety of common
development environments, such as .NET, Java (including servlets), PHP, and plain C
or C++ application development.

The PLOP/PLOP DS license covers both the command-line tool and the library.

0.5 What’s new in PLOP and PLOP DS? 15

0.5 What’s new in PLOP and PLOP DS?
General changes in PLOP 5.1:

> certificate security: encrypt a document against a set of recipients which are identi-
fied by their digital certificate

> pCOS interface 11 for retrieving details of documents encrypted with certificate secu-
rity

> updated language bindings and platform support
> various bug fixes and improvements in the language bindings and kernel

Signature-related changes in PLOP DS 5.1:
> updated timestamping according to RFC 5816 (SigningCertificateV2/ESSCertIDv2)
> optimize file size and processing speed for generating signatures
> timing options for OCSP
> support for indirect CRLs
> made CRL retrieval more robust, e.g. unexpected HTTP headers
> workarounds in the PKCS#11 engine to handle behavior of certain token models
> PKCS#11 improvements for multi-threaded signing applications
> support for signing with a Hardware Security Module (HSM)
> create PAdES/CAdES signatures by default
> custom build of PLOP DS for attaching external cryptographic engine for hashing

and signing
> bug fixes in PDF handling, e.g. form field names, XMP properties
> added code samples for creating dynamic signature visualization with PDFlib
> new build configuration for attaching external crypto routines via the PKCS#11 in-

terface, but without dynamic loading

Changes in PLOP DS 5.2:
> support PSS encoding scheme for RSA signatures
> certificate security: support OAEP padding scheme for RSA

Changes in PLOP 5.3:
> updated language bindings and platform support
> pCOS interface 12 with support for identifying upcoming ISO standards and im-

provements in the security model for accessing form fields in restricted mode
> added the pCOS command-line tool
> support PSS encoding scheme for RSA signatures also via PKCS#11
> support for Amazon CloudHSM

Changes in PLOP 5.4:
> many improvements for platforms and language bindings
> updated third-party code to fix potential security vulnerabilities
> support of proxy servers for network access
> don’t create a separate PDF update for the DSS since some signature validation tools

complained that »Signature doesn't cover whole document«.
> enable transport compression for CRLs and OCSP to accelerate network transmission
> add workaround for misconfigured CAs when downloading CRLs
> more workarounds for malformed PDF and XMP metadata
> support for Alpine Linux

1.1 Password Security and Permissions 17

1 PLOP Features
Note PLOP DS features for digital signatures are presented in Chapter 2, »PLOP DS Features (Digital

Signature)«, page 31.

1.1 Password Security and Permissions
Encrypting and decrypting PDF documents with passwords as well as permission re-
strictions are covered in detail in Chapter 5, »Password Security«, page 61. In the current
section we provide a summary and some initial examples.

Querying security settings. With the pCOS programming interface you can query vari-
ous security settings of a PDF document which has been protected with password secu-
rity. The required function calls and parameters can be seen in the dumper mini sample,
which is included in all PLOP packages. The pCOS command-line tool can be used to
query information from PDF documents without any programming (see Section 1.6,
»Query Document Information with pCOS«, page 22, for an example).

Encrypting documents with a password. You can encrypt documents by specifying
the userpassword or masterpassword option (or both) for create_document(). Note that a
user password always requires a master password, but not vice versa. Sample code for
encrypting PDF documents can be seen in the encrypt sample which is included in all
PLOP packages. The equivalent options for the PLOP command-line tool are --user and
--master.

Example: encrypt a file with user password demo and master password DEMO:

plop --user demo --master DEMO --outfile encrypted.pdf input.pdf

Specify permission restrictions. You can specify the permission restrictions in the
permissions option of create_document() which supports various keywords (see Table 5.3,
page 66). The equivalent option for the PLOP command-line tool is --permissions. Note
that permission restrictions always require a master password.

Example: encrypt a document with the master password DEMO, and disallow print-
ing the document and copying contents:

plop --master DEMO --permissions "noprint nocopy" --outfile encrypted.pdf input.pdf

Decrypting password-protected documents. You can decrypt documents by specify-
ing the appropriate user or master password in the password option for
open_document(). The equivalent option for the PLOP command-line tool is --password.

Example: decrypt a single file with the master password DEMO. All access restrictions
which may have been applied to the input document will be removed (since the output
is unencrypted):

plop --password DEMO --outfile decrypted.pdf encrypted.pdf

More encryption and decryption examples can be found in Section 5.3, »Applying Pass-
word Security on the Command-Line«, page 68.

18 Chapter 1: PLOP Features

1.2 Certificate Security
Encrypting and decrypting PDF documents with certificates are covered in detail in
Chapter 6, »Certificate Security«, page 71. In the current section we provide a summary
and some initial examples.

Querying security settings. With the pCOS programming interface you can query vari-
ous security settings of a PDF document which has been protected with certificate secu-
rity. The required function calls and parameters can be seen in the dumper mini sample,
which is included in all PLOP packages. The pCOS command-line tool can be used to
query information from PDF documents without any programming (see Section 1.6,
»Query Document Information with pCOS«, page 22, for an example).

Encrypting documents with a certificate. You can encrypt documents by specifying
the a recipient certificate with add_recipient(). Sample code for encrypting PDF docu-
ments can be seen in the certsec sample which is included in all PLOP packages. The
equivalent option for the PLOP command-line tool is --recipient.

Example: encrypt a file with a certificate:

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--outfile encrypted.pdf input.pdf

Specify permission restrictions. You can specify permission restrictions for a recipient
in the permissions option of add_recipient().

Example: Encrypt a document for a recipient and restrict its permissions so that
printing and copying are not allowed:

plop --recipient "certificate={filename=demo_recipient_1.pem permissions={noprint
nocopy}}" --outfile encrypted.pdf input.pdf

Decrypting documents protected with certificate security. You can decrypt docu-
ments by specifying an appropriate recipient ID in the digitalid option of
open_document(). The equivalent option for the PLOP command-line tool is --inputopt.

Example: decrypt a single file with a digital id which is available in a password-pro-
tected PKCS#12 file:

plop --inputopt "digitalid={filename=demo_recipient_1.p12} password=demo"
--outfile decrypted.pdf encrypted.pdf

More encryption and decryption examples can be found in Section 6.5, »Applying Cer-
tificate Security on the Command-Line«, page 84.

1.3 Web-Optimized (Linearized) PDF 19

1.3 Web-Optimized (Linearized) PDF
PLOP can apply a process called linearization to PDF documents. The resulting property
is called Fast Web View in Acrobat. Linearization reorganizes the objects within a PDF file
and adds supplemental information which can be used for faster access.

While non-linearized PDFs must be fully transferred to the client, a Web server can
transfer linearized PDF documents one page at a time using a process called byte-
serving. It allows Acrobat (running as a browser plugin) to retrieve individual parts of a
PDF document separately. The result is that the first page of the document will be pre-
sented to the user without having to wait for the full document to download from the
server. This provides enhanced user experience.

Note that the Web server streams PDF data to the browser, not PLOP. Instead, PLOP
prepares the PDF files for byteserving. All of the following requirements must be met in
order to take advantage of byteserving PDFs:

> The PDF document must be linearized, which can be achieved with PLOP. Lineariza-
tion can be applied along with encryption or decryption in a single run. In Acrobat
you can check whether a file is linearized by looking at its document properties
(»Fast Web View: yes«).

> The user must use Acrobat as a Browser plugin, and have page-at-a-time download
enabled in the PDF viewer (Acrobat XI/DC: Edit, Preferences, Internet, Allow fast web
view). This is enabled by default.

The larger a PDF file (measured in pages or MB), the more it will benefit from lineariza-
tion when delivered over the Web.

Linearization and encryption/decryption can be applied in combination. However,
in order to linearize a protected file you must provide the proper master password (see
Table 5.2).

Linearization and file size. Since linearization aims at improving the Web-based dis-
play of large PDF documents it doesn’t make much sense for single-page documents (al-
though this is possible). However, due to a bug in Acrobat small linearized documents
are not always treated as linearized. For example, Acrobat regards all documents which
are smaller than 4KB as non-linearized.

Acrobat also doesn’t regard PDF documents larger than 2 GB as linearized.

Linearizing PDF documents with PLOP. You can enable the linearization step with the
linearize option for create_document().

The equivalent option for the PLOP command-line tool is --webopt. Example: linear-
ize all PDF documents in a directory (assuming these do not require any password), and
copy the resulting files to the target directory output. Verbosity level 2 prints the names
of all input and output files as they are processed:

plop --verbose 2 --webopt --targetdir output *.pdf

20 Chapter 1: PLOP Features

1.4 Optimization (Size Reduction)
While processing PDF documents PLOP can apply file optimization in addition to other
operations:

> PLOP detects multiple instances of identical data, and removes all instances but one.
This is mostly relevant for fonts and images, but may affect other data types as well,
e.g. ICC profiles or even complete pages with identical content. An embedded font or
image is removed if another font or image contains the exact same data; all referenc-
es to the removed data are replaced with references to the remaining instance of the
font or image. For example, if a document has been assembled from several PDFs
containing parts of a document and all of these parts contain the same embedded
font, the resulting combined PDF may carry excess font data. PLOP reduces the re-
dundant font data and keeps only one instance of the font.

> Unused objects are removed from the PDF file in a process known as garbage col-
lection. In some cases (when the Save menu item in Acrobat has been used, as op-
posed to Save As...) Acrobat appends changes to a file while retaining the previous
state of the document. PLOP removes all objects related to older versions of the docu-
ment.

PLOP never applies any optimization which would result in loss of information (e.g. un-
embedding fonts, downsampling images). All relevant information for viewing or print-
ing the document in the exact same quality of the input is retained in the output.

Since only a small fraction of today’s PDF documents suffers from redundant objects
the optimization step is disabled by default.

Optimizing PDF documents with PLOP. You can enable the optimization step with the
optimize=all option for create_document() or the --outputopt option of the PLOP com-
mand-line tool.

Example: optimize a document with the PLOP command-line tool:

plop --outputopt optimize=all --outfile optimized.pdf input.pdf

Removing XMP metadata with PLOP. Some applications create PDF output with large
amounts of XMP metadata which are not required in all situations. There are extreme
cases where XMP metadata accounts for the vast majority of the total PDF file size. In
these cases you can remove unwanted XMP document metadata with PLOP as follows:

plop --inputopt xmppolicy=remove --outfile output.pdf input.pdf

This may substantially reduce the PDF file size at the expense of detailed metadata.
Note that standard identifiers (e.g. for PDF/A) in the XMP are lost.

1.5 Repair Mode for Damaged PDF 21

1.5 Repair Mode for Damaged PDF
PLOP implements a repair mode for damaged PDF so that even certain kinds of dam-
aged documents can be processed. However, in rare cases a damaged PDF document
may be rejected if PLOP is unable to repair it.

Repairing PDF documents with PLOP. The repair mode is activated automatically
when PLOP encounters damaged input. However, using the repair=force option of
open_document() you can enforce the repair mode even if no problems occurred when
opening the document. The equivalent option for the PLOP command-line tool is
--inputopt repair=force. You can disable the repair mode with repair=none.

Example: force reconstruction of a document with the PLOP command-line tool:

plop --inputopt repair=force --outfile repaired.pdf damaged.pdf

Invalid XMP metadata. PLOP repairs certain kinds of problems in XMP metadata.
However, some problems cannot be repaired. For example XML parsing errors caused by
XMP metadata always imply that the XMP is unusable. PLOP provides the xmppolicy op-
tion for controlling the processing behavior when invalid XMP is encountered. See
»Dealing with invalid XMP metadata«, page 26, for more details.

22 Chapter 1: PLOP Features

1.6 Query Document Information with pCOS
With the pCOS interface, which is integrated in the PLOP library, you can query various
properties of a PDF document. The pCOS interface is covered in detail in the pCOS Path
Reference. Sample code for querying document information with pCOS can be seen in
the dumper mini sample which is included in all PLOP packages.

Querying general document information with the pCOS command-line tool. The pCOS
command-line tool displays general encryption information, font names and other in-
formation about a PDF document. More examples and a description of all supported op-
tions are available in the pCOS command-line tool manual. Sample output:

pcos PLOP-manual.pdf

This program call results in output similar to the following:
File name: PLOP-manual.pdf
File size: 1166699

PDF version: 1.7
 Encryption: No encryption
 Master pw: false
 User pw: false
 nocopy: false (copying is allowed)
 nomodify: false (adding form fields and other changes is allowed)
 noannots: false (adding or changing comments or form fields is allowed)
 noassemble: false (insert/delete/rotate pages, creating bookmarks is allowed)
 noforms: false (filling form fields is allowed)
 noaccessible: false (extracting text or graphics for accessibility is allowed)
 nohiresprint: false (high-resolution printing is allowed)
 plainmetadata: true (metadata is not encrypted)
 Linearized: true
 PDF/X status: none
 PDF/A status: none
 PDF/UA status: none
 PDF/VT status: none
 Tagged PDF: false
 Signatures: 0
 Reader-enabled: false

 No. of pages: 172
 No. of fonts: 12
 embedded TrueType font PDFlibLogo-Regular
 embedded Type 1 CFF font ThesisAntiqua-Bold
 embedded Type 1 CFF font TheSans-Italic

...
 embedded Type 1 CFF font ThesisAntiqua-Normal
 embedded Type 1 CFF font TheSansMonoCondensed-Plain

 Author: 'PDFlib GmbH'
 CreationDate: 'D:20160420105759Z'
 Creator: 'FrameMaker 11.0.2'
 ModDate: 'D:20160420112723+02'00''
 Producer: 'Acrobat Distiller 11.0 (Windows)'
 Subject: 'PDFlib PLOP and PLOP DS: PDF Linearization, Optimization,

Protection, Digital Signature'
 Title: 'PDFlib PLOP and PLOP DS Manual'

1.6 Query Document Information with pCOS 23

 XMP meta data: is present
 Encr. attachm.: no

Querying specific information with the pCOS command-line tool. The pCOS com-
mand-line tool can also be used to retrieve the value of a particular pCOS path from a
document.

The following command lists all annotations (links and other types) with their Sub-
type, destination within the document, the target URL, and the link rectangle coordi-
nates on the page. Double quotes must surround the list of annotation keys since they
must be supplied as a single argument to the program:

pcos --extended annotation "Subtype destpage A/URI Rect" file.pdf

The following command prints the number of annotations on the first page:

pcos --pcospath "length:pages[0]/Annots" file.pdf

More examples can be found in the pCOS command-line tool manual.

24 Chapter 1: PLOP Features

1.7 Inserting and Reading Document Info Entries
PDF supports two kinds of document metadata which contain general information
about a document: document info entries and XMP metadata.

Document info entries are keys with associated strings that hold some unstructured
information. The predefined info keys Subject, Title, Author, and Keywords are commonly
used, but arbitrary custom keys can be defined for specific purposes. Document infor-
mation entries are considered the old and simple kind of PDF metadata.

With PLOP you can add new document information entries or replace the values of
existing info entries. Both predefined or custom entries can be set. If the input docu-
ment contains XMP document metadata, standard and custom info entries are auto-
matically synchronized to XMP in order to keep the metadata consistent.

Inserting document info entries with PLOP. You can set document info entries with
the docinfo option for create_document().

Example: specify the predefined document info entry Subject and the custom info
entry Department; note the braces around Product Manual to protect the space character:

docinfo={Department Techdoc Subject {Product Manual}}

This option can be supplied to the PLOP command-line tool via the --outputopt option as
follows:

plop --outputopt "docinfo={Department Techdoc Subject {Product Manual}}"
--outfile output.pdf input.pdf

In PDF 2.0 the document info dictionary is deprecated. It is therefore only emitted if the
emitdocinfo option in create_document() is true. Even if no document info dictionary is
created, document info entries are still synchronized to XMP.

Reading document info entries with PLOP. With the pCOS programming interface,
which is integrated in the PLOP library, you can read document information entries
(keys and values) from a PDF document. The required function calls and parameters can
be seen in the dumper mini sample, which is included in all PLOP packages.

The pCOS command-line tool can be used to query information from PDF docu-
ments without any programming (see Section 1.6, »Query Document Information with
pCOS«, page 22, for an example).

Document info entries in PDF/A. Keep in mind that the PDF/A standard mandates spe-
cial handling for document info entries:

> PDF/A-1: the standard document info entries Title, Author, Subject, Keywords, Creator,
Producer, CreationDate, ModDate must be synchronized in the document XMP meta-
data. PLOP automatically provides this synchronization.

> PDF/A-2/3: document information entries may be present, but must be ignored by
PDF/A-conforming readers. If they are present, they should be synchronized with
document XMP which is done automatically by PLOP as in the PDF/A-1 case.

1.8 Inserting, Reading, or Removing XMP Metadata 25

1.8 Inserting, Reading, or Removing XMP Metadata
XMP (Extensible Metadata Platform) is an XML framework with many predefined proper-
ties. As the name implies, XMP can be extended to satisfy specific requirements using
custom extension schemas. XMP is much more powerful than document information
entries, and is required in PDF/A and various other standards. Many industry groups
have published standards based on XMP for various vertical applications, e.g. digital im-
aging or prepress data exchange.

You can find more detailed information on XMP as well as links to other resources
on the PDFlib Web site.

With PLOP you can insert XMP metadata in PDF documents or read XMP from PDF.
Inserted XMP is validated to make sure that correct output is created. If the input docu-
ment conforms to the PDF/A standard, user-supplied XMP must conform to the XMP
rules set forth in PDF/A. These rules (including XMP extension schema validation) are
checked by PLOP to make sure that PDF/A input plus user-supplied XMP will result in
conforming PDF/A output.

XMP insertion with PLOP can be used in the following and many other situations
(the names of sample XMP files in the PLOP distribution are provided in parenthesis):

> Add XMP metadata to PDF/A documents, including support for XMP extension sche-
mas as defined in the PDF/A standard (machine_pdfa1.xmp).

> Add XMP metadata describing the scan process for digitized legacy documents
(engineering.xmp).

> Add XMP metadata according to the Ghent Workgroup (GWG) Ad Ticket scheme,
(gwg_ad_ticket.xmp). For more details see www.gwg.org/download/job-tickets/

> Add company-specific XMP metadata (acme.xmp).

Inserting XMP metadata with PLOP. In order to insert metadata you must create a file
which contains valid XMP metadata in UTF-8 format. You can insert XMP with the
metadata option for create_document(), which supports several suboptions. Sample
code for inserting XMP in PDF documents is available in the insertxmp mini sample,
which is included in all PLOP packages.

Example: insert XMP metadata from a file called gwg_ad_ticket.xmp, where the XMP
is validated against the XMP 2004 standard:

plop --outputopt "metadata={filename=gwg_ad_ticket.xmp validate=xmp2004}"
--outfile output.pdf input.pdf

Synchronizing document info entries to XMP. Document info entries inserted with
the docinfo option for create_document() are automatically synchronized to XMP. This
provides a convenient way of creating XMP without having to deal with XMP details.

Standard document info entries are mirrored in the corresponding standard XMP
properties. Custom document info entries are mirrored in the pdfx XMP schema (the
schema name is derived from PDF Extension and is unrelated to the PDF/X standard).
Note that custom document info entries are not mirrored to XMP in PDF/A mode since
PDF/A requires an extension schema description for custom properties.

Reading XMP metadata with PLOP. With the pCOS programming interface, which is
integrated in the PLOP library, you can extract XMP metadata from a PDF document.
The required function calls and parameters can be seen in the dumper mini sample.

http://www.gwg.org/download/job-tickets/

26 Chapter 1: PLOP Features

Note that the dumper sample does not actually print the XMP metadata, but simply re-
ports the size of the XMP found in the document.

XMP metadata can also be extracted with the pCOS command-line tool.

Removing XMP metadata with PLOP. In some situations you may want to remove
XMP metadata, e.g. because it no longer matches the actual document contents. This
can be achieved with PLOP as follows:

plop --inputopt xmppolicy=remove --outfile output.pdf input.pdf

Note that standard identifiers (e.g. for PDF/A) are lost when removing XMP metadata.

Dealing with invalid XMP metadata. PDF documents sometime contain invalid XMP
metadata which is either invalid on the XML level or the XMP/RDF level. PLOP will by de-
fault reject such documents and stop processing. In order to provide more fine-grain
control for such input documents the xmppolicy option for open_document() can be
used to distinguish the following cases:

> xmppolicy=rejectinvalid: by default, invalid XMP prevents PLOP from generating PDF
output.

> xmppolicy=ignoreinvalid: ignore invalid XMP and include the text of the XML parsing
error message in the generated output XMP as a debugging aid. Note that no PDF/A
or PDF/X-3/4/5 output can be created with this option.

> xmppolicy=remove: remove input XMP. This may be useful to delete unwanted meta-
data.

For example, if you don’t want invalid XMP metadata to disrupt batch processing of
documents you can ignore problems caused by invalid XMP in the input document:

plop --inputopt "xmppolicy=ignoreinvalid" --outfile output.pdf input.pdf

1.9 PLOP Processing Details 27

1.9 PLOP Processing Details
Acceptable input documents. PLOP accepts the following PDF flavors:

> PDF 1.6 (Acrobat 7) and all older versions
> PDF 1.7 (Acrobat 8), technically identical to ISO 32000-1
> PDF 1.7 Adobe extension level 3 (Acrobat 9)
> PDF 1.7 Adobe extension level 8 (Acrobat X and above)
> PDF 2.0 according to ISO 32000-2

Depending on the desired operation a password may be required for encrypted docu-
ments. PLOP attempts to repair various kinds of damaged PDF documents.

PDF version. The PDF version of the generated output document is never lower than
the PDF version number of the input document, but it may be forced to a higher num-
ber. PLOP uses the PDF version of the input document, modified according to the follow-
ing rules:

> In PDF/A-1 and PDF/X mode the PDF version is kept unchanged; in PDF/A-2/3 mode
PDF 1.7 is generated.

> Otherwise the PDF output version is at least PDF 1.6.
> Password security (option masterpassword) increases the PDF version to PDF 1.7ext3

for encryption algorithm 4 and to PDF 1.7ext8 for encryption algorithm 11 (see »En-
cryption algorithm and key length for password security«, page 65).

> Certificate security (function add_recipient()) increases the PDF version to PDF 1.6 for
pCOS algorithm 6, and to PDF 1.7ext3 for pCOS algorithm 10 (see »PDF encryption al-
gorithm and key length«, page 80).

> Some signature features increase the PDF version to PDF 1.7ext8 (see Table 7.1).

Standard conformance. PLOP processing conforms to several PDF standards. If the in-
put conforms to one of the following standards, the output generated by PLOP is guar-
anteed to conform to the same standard:

> PDF/A-1/2/3: all flavors
> PDF/X-3/4/5 and PDF/VT-1: all flavors
> PDF/UA-1

Note that some PLOP operations (most importantly encryption) are not compatible
with certain standards. In this situation the sacrifice option can be used to set priorities
(see below).

Sacrificing certain properties of the input PDF. Conflicts can arise between several PDF
document properties and certain PLOP actions. For example, PDF/A documents are not
allowed to use encryption. What should PLOP do when encryption is requested for a
PDF/A document? By default PLOP refuses the operation and throws an exception. How-
ever, you can use the option sacrifice for create_document() or the --outputopt option of
the PLOP command-line tool to give the requested action priority over the input prop-
erty. In the example above, the PDF/A conformance entry is removed from the docu-
ment to allow encryption.

There are several combinations of input document properties and requested actions.
In all of these combinations you can use the sacrifice option to allow an operation by
sacrificing a particular document property (see Table 8.4, for details):

28 Chapter 1: PLOP Features

> PDF/A: PLOP applies digital signatures in a PDF/A-conforming manner: input docu-
ments which conform to the PDF/A-1, PDF/A-2 or PDF/A-3 standard are guaranteed to
produce PDF/A-conforming signed output. However, encryption is not allowed for
PDF/A documents since the standard prohibits any encryption. You can sacrifice
PDF/A conformance with the sacrifice={pdfa} option, though. PDF pages used for sig-
nature visualization must also conform to PDF/A (see Section 7.3.1, »Visualizing Sig-
natures with a Graphic or Logo«, page 102).

> PDF/X: PDF/X-1a/3/4/5 don’t allow encryption or visible signature fields on the page.
In these situations PLOP raises an exception, but you can sacrifice PDF/X confor-
mance with the sacrifice={pdfx} option. Signature visualization is not supported in
PDF/X mode.

> PDF/UA: most PLOP operations conform to PDF/UA-1 with the exception of permiss-
ions=noaccessible. You can sacrifice PDF/UA conformance with the sacrifice={pdfua}
option.

> PLOP cannot apply signatures if the document contains non-signature form fields
without appearances (e.g. form fields created with PDFlib 9.2 or earlier), and there-
fore issues an error for this kind of input. The reason is that Acrobat writes the miss-
ing form field representation into the document which instantly invalidates the sig-
nature. You can sacrifice existing form fields in this situation with the option
sacrifice={fields} in create_document() or the --outputopt option of the PLOP com-
mand-line tool. Note that the form field restriction does not apply to a signature
field which will hold the generated signature. There are no restrictions for form field
documents created with PDFlib 9.3 or above.

> If an unencrypted document contains encrypted file attachments for which the
password is not available, processing stops by default. You can sacrifice encrypted
file attachments with the option sacrifice={encryptedattachments} in
create_document() or the --outputopt option of the PLOP command-line tool. Encrypt-
ed file attachments for which the password is not available are removed with this
option.

> If the input document contains one or more digital signatures and no new signature
is created in update mode, processing stops with an exception by default. You can
sacrifice existing signatures with the option sacrifice={signatures} in
create_document() or the --outputopt option of the PLOP command-line tool.

Properties of the input document which are generally lost. The following properties
of the input document are lost after applying any PLOP operation:

> If the input document is linearized, the linearization is lost by default. In order to
linearize the output, supply the linearize option to create_document() or the --linearize
option to the PLOP command-line tool. Note that linearization cannot be combined
with digital signatures.

> Reader-enabled documents: processing Reader-enabled PDF documents with PLOP
results in output which is not Reader-enabled. Since Reader-enabled documents can
only be created with Adobe software there is no workaround.

Temporary disk space requirements. PLOP reads an input PDF document and writes an
output PDF. The output document requires roughly the same amount of disk space as
the input document (unless PLOP’s optimizing step removes redundant information).
In many cases no additional disk space is required. However, PLOP/PLOP DS require ad-

1.9 PLOP Processing Details 29

ditional temporary disk space for its operation if linearization or digital signatures are
enabled.

Temporary files are created in the current directory by default, but this can be
changed with the tempdirname option of create_document(). The disk space for tempo-
rary data roughly equals the size of the input file. If linearization is requested in combi-
nation with in-core PDF generation (i.e., no output file name supplied), PLOP requires
temporary disk space with roughly two times the size of the input.

Large PDF Documents. Although most users won’t see any need for PDF documents in
the range of Gigabytes, some enterprise applications must create or process documents
containing a large number of, say, invoices or statements. While PLOP itself does not im-
pose any limits on the size of the generated documents, there are several restrictions
mandated by the PDF Reference and some PDF standards:

> 2 GB file size limit: PDF/A and other standards limit the file size to 2 GB. If a docu-
ment gets larger than this limit, PLOP throws an exception when creating PDF/A,
PDF/X-4 or PDF/X-5 output. Otherwise documents beyond 2 GB can be created.

> 10 GB file size limit: classical cross-reference tables in PDF documents are limited to
10 decimal digits and therefore 1010-1 bytes, which equates to roughly 9.3 GB. How-
ever, this limit can be exceeded with compressed object streams. While compressed
object streams reduce the overall file size anyway, the compressed cross-reference
streams which are part of the objectstreams implementation are no longer subject to
the 10-decimal-digits limit and therefore allow creation of PDF documents beyond 10
GB.

> Number of objects: while the object count in a document is not limited by PDF in
general, the PDF/A, PDF/X-4 and PDF/X-5 standards limit the number of indirect ob-
jects in a document to 8.388.607. If a document requires objects beyond this limit,
PLOP throws an exception when creating PDF/A, PDF/X-4 or PDF/X-5 output. In other
modes documents with more objects can always be created. This check can be dis-
abled with the option limitcheck=false.

Multi-threaded Programming. While PLOP itself is single-threaded, it can safely be
used in multi-threaded applications. In the common situation that a PLOP object is only
used within one thread, no particular multi-threading precautions are necessary. If the
same object is used in multiple threads the application must synchronize the threads to
make sure that the PLOP object is not accessed simultaneously by more than one
thread. A typical scenario would involve a pool of PLOP objects where each thread fetch-
es an existing PLOP object from the pool instead of creating a new one, and returns it to
the pool after creating a document if the object is no longer needed. Using the same
PLOP object in another thread before the output document is finished will rarely pro-
vide any advantage and is not recommended.

What you can’t do with PLOP. Please be aware of the following restrictions:
> PLOP is not a cracker tool – it cannot be used to gain access to protected documents

without knowing the appropriate master password.
> You cannot process dynamic XFA forms – also called Adobe Experience Manager

(AEM) forms – since these are not genuine PDF documents but rather XML forms
packaged inside a thin PDF layer.

2.1 Signature Features in PLOP DS 31

2 PLOP DS Features (Digital
Signature)

Note The ability to digitally sign PDF documents is only available in PLOP DS, but not in the PLOP
base product.

Digital signatures for PDF documents are covered in detail in Chapter 7, »Digital Signa-
tures with PLOP DS«, page 87. In the current chapter we provide a summary and initial
examples which may serve as a starting point.

2.1 Signature Features in PLOP DS
PDF Signature Properties.

> Create signatures in existing PDF signature fields or generate new fields which hold
the signature. The signatures can be invisible or visible at a particular location on the
page.

> Visualize digital signatures by importing a logo, scan of a handwritten signature or
other representation as PDF page.

> Create PDF certification (author) signatures which allow document changes such as
form-filling without breaking the signature.

> Validation information can be stored directly in the signature according to ISO
32000-1 or in a Document Security Store (DSS) as specified in ISO 32000-2 and PAdES
part 4.

> Signatures can be applied in an incremental PDF update section to preserve existing
signatures and document structure, or by rewriting the document structure which
allows optimization and encryption.

PDF Versions and Standards. PLOP DS supports all relevant PDF versions and stan-
dards:

> PLOP DS processes all PDF versions up to Acrobat DC, i.e. PDF 1.7 (ISO 32000-1) up to
extension level 8. PLOP DS can also process documents according to PDF 2.0 (ISO
32000-2).

> PLOP DS is aware of the PDF/A-1/2/3 (ISO 19005) archiving standards: if the input doc-
ument conforms to PDF/A, the output document is guaranteed to conform as well.
PLOP DS fully supports XMP extension schemas as required by PDF/A. The ability to
insert PDF/A-conforming XMP metadata in PDF documents is an important advan-
tage of PLOP DS.

> Similarly, PLOP DS is aware of the PDF/X-1a/3/4/5 (ISO 15930) print production stan-
dards, PDF/VT-1 (ISO 16612-2) for transactional printing and PDF/UA-1 (ISO 14289) for
accessible PDF.

Signature standards.
> CMS-based PDF signatures according to PDF 1.7 (ISO 32000-1)
> Signatures for Long-Term Validation (LTV) according to PDF 2.0 (ISO 32000-2)
> PAdES (PDF Advanced Electronic Signatures) according to ETSI TS 102 778 part 2, 3 and

4, ETSI EN 319 142 and CAdES (ETSI TS 101 733) for qualified eIDAS signatures

32 Chapter 2: PLOP DS Features (Digital Signature)

PAdES conformance levels.
> Basic Signature (PAdES Level B-B)
> Signature with Time (PAdES Level B-T)
> Signature with Long-Term Validation Material (PAdES Level B-LT)
> Signature providing Long Term Availability and Integrity of Validation Material

(PAdES Level B-LTA): required for eIDAS conformance
> Basic Electronic Signature (PAdES Level E-BES) and Explicit Policy-based Electronic

Signature (PAdES Level E-EPES) according to PAdES part 3

Timestamping.
> Retrieve a timestamp from a trusted Timestamp Authority (TSA) according to RFC

3161, RFC 5816 and ETSI EN 319 422, and embed it in the generated signature. TSA de-
tails can be read from AATL certificates to create timestamps without any configura-
tion.

> Create document-level timestamp signatures according to ISO 32000-2 and PAdES
part 4. A document-level timestamp assures the state of a document without apply-
ing a personal signature.

Cryptographic Signature Details.
> Signatures according to the RSA and DSA algorithms as well as the Elliptic Curve Dig-

ital Signature Algorithm (ECDSA). PKCS#1 v1.5 and PKCS#1 v2.1 (PSS) encoding for RSA
are supported.

> Strong signature and hash functions.
> Embed the full certificate chain in the generated signatures, which means that signa-

tures with certificates from a CA (Certification Authority) on the Adobe Approved
Trust List (AATL) or the European Union Trust List (EUTL) can be validated in Acrobat
and Adobe Reader without any configuration on the client side.

> Embed Online Certificate Status Protocol responses (OCSP according to RFC 2560 and
RFC 6960) and Certificate Revocation Lists (CRL according to RFC 3280) as revocation
information for Long-Term Validation (LTV).

Signature Engines. PLOP DS supports multiple cryptographic engines, i.e. components
for generating digital signatures:

> The built-in engine implements the required cryptographic functions directly in
PLOP DS without any external dependencies. The built-in engine supports software-
based digital IDs in the PKCS#12 and PFX formats.

> PLOP DS can attach cryptographic tokens via the standard PKCS#11 interface. This
way digital IDs on smartcards, USB sticks, and other secure devices can be used for
signing. This includes devices with an integrated keyboard for secure PIN input.

> The PKCS#11 interface can also be used to sign with a Hardware Security Module
(HSM). HSMs offer secure key storage and ample performance for high-volume sign-
ing applications. PLOP DS uses PKCS#11 sessions to maximize performance of bulk
signatures with HSMs. PLOP DS can also be used with HSMs in the cloud such as AWS
CloudHSM.

> On Windows PLOP DS can leverage the cryptographic infrastructure provided by the
operating system (MS CAPI). Digital IDs from the Windows certificate store can be
used for signing, including software-based digital IDs and secure hardware tokens.
Note that not all signature features are available with the MSCAPI engine, e.g. LTV.

2.2 Preparations for PLOP DS Evaluation 33

> Alternatively a user-supplied cryptographic engine can be used to ensure that all
cryptographic operations (hashing and signing) are performed in a dedicated cryp-
tographic library.

What you can’t do with PLOP DS. Please be aware of the following restrictions:
> You cannot Reader-enable PDF documents (e.g. allow annotation creation in Adobe

Reader) with PLOP DS because this requires a specific Adobe signature.
> You cannot sign static or dynamic XFA forms.

2.2 Preparations for PLOP DS Evaluation
Install PDFlib Demo CA certificate in Acrobat. The following step is not required for
creating digital signatures with PLOP DS. However, if you are evaluating PLOP DS with
the sample certificates provided in the packages it is recommended to configure Acro-
bat as detailed below. This is not required if you work with certificates from a commer-
cial CA which is installed in Acrobat’s list of trusted certificates (see »Trusted Root Cer-
tificates in Acrobat«, page 90)

The sample certificates which are included in the PLOP DS package have been issued
and signed by the PDFlib Demo CA. If you make the self-signed root certificate of this CA
available to Acrobat, the generated signatures are accepted as fully valid in Acrobat. Pro-
ceed as follows for installing the PDFlib Demo CA certificate in Acrobat XI/DC:

> Click Edit, Preferences, Signatures, Identities & Trusted Certificates, More..., Trusted
Certificates, Import, Browse...

> Browse to bind/data/PDFlibDemoCA_G3.crt (part of the PLOP installation) and click
Import, Ok.

> Now the entry PDFlib GmbH Demo CA G3 is visible in the list of trusted certificates. Se-
lect this entry, click on Edit Trust, and activate the buttons Use this certificate as a
trusted root and Certified documents, and click Ok.

Import demo digital IDs in Windows. In order to test the MSCAPI-based signature en-
gine of PLOP DS on Windows you must make available digital IDs in the Windows certif-
icate store. In order to import the demo digital IDs double-click on the corresponding
.p12 file to launch the certificate import wizard, and follow its instructions.

2.3 Signing Documents with PLOP DS
Applying a signature requires a digital ID, which may be available as a file, in the Win-
dows certificate store, or on a cryptographic token (e.g. a smartcard or USB stick). While
the former requires a password for accessing the digital ID, the Windows certificate
store is usually protected by the Windows login and does not require any password.
Cryptographic tokens are often protected by a PIN which must be supplied either by the
signing software or directly on the token’s integrated keyboard.

You can prepare a digital signature with prepare_signature() which supports several
options, and then apply it with create_document(). Sample code for signing PDF docu-
ments is available in the sign and multisign mini samples which are included in all PLOP
packages. The equivalent option for the PLOP command-line tool is --signopt.

34 Chapter 2: PLOP DS Features (Digital Signature)

Basic signature option list examples. Create an invisible signature for a PDF document
using a digital ID from the file demo_signer_rsa_2048.p12. The password demo for the dig-
ital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

(Windows only) Create an invisible signature for a PDF document using a certificate
from the Windows Certificate Store (from the default store My). This assumes that the
digital ID is protected by your Windows login so that no password must be supplied:

plop --signopt "engine=mscapi digitalid={store=My subject={PLOP Demo Signer RSA-2048}}"
 --outfile signed.pdf input.pdf

Create an invisible signature for a PDF document using a digital ID from a cryptograph-
ic token. The PKCS#11 interface for the token is implemented in the library cryptoki.dll
which must be provided by the smartcard supplier. The password for the digital ID is
contained in the file pw.txt:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

More details are available in Section 7.2, »Signing with PLOP DS«, page 93.

2.4 Certification Signatures
A certification or author signature certifies the state of the document as the author cre-
ated it while at the same time allowing certain changes without breaking the certifica-
tion. The certification option specifies the changes which can be applied to the certified
document without breaking the signature, e.g. form-filling allowed:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
certification=formfilling"
--outfile certified.pdf input.pdf

2.5 Timestamps
In order to add a timestamp to a signature you need the URL of a Timestamp Authority
(TSA) and must supply it to the timestamp option:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
timestamp={source={url={http://timestamp.acme.com/tsa-noauth/tsa}}}"
--outfile signed.pdf input.pdf

Similarly, a document-level timestamp can be applied with the doctimestamp option:

plop --signopt
"doctimestamp={source={url={http://timestamp.acme.com/tsa-noauth/tsa}}}"
--outfile signed.pdf input.pdf

More details are available in Section 7.5, »Timestamps«, page 118.

2.6 LTV-enabled Signatures 35

2.6 LTV-enabled Signatures
Support for long-term validation (LTV) requires that all certificates in the chain are
available, and that certificate revocation information can be obtained online or from a
disk file when the signature is created. This requires suitable OCSP or CRL servers to be
provided by the PKI. In many cases (especially AATL certificates) the necessary network
information can be read from the signing certificate. Otherwise you must provide suit-
able network resources via the ocsp and/or crl/crlfile/crldir options. In order to provide ac-
cess to the whole certificate chain you must supply the option rootcertfile with the
name of a PEM file containing the root CA certificate.

LTV-enabled signatures generally require online PKI resources (CRL or OCSP) for the
certificates in use, which are not available for the PLOP DS demo certificates. As a work-
around you can use the CRL file PDFlibDemoCA_G3.crl which is provided in the distribu-
tion (this CRL has a very long expiration date which would not be acceptable in a pro-
duction environment). The corresponding command-line call for creating LTV-enabled
signatures looks as follows:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} password=demo ltv=full
crlfile=PDFlibDemoCA_G3.crl rootcertfile=PDFlibDemoCA_G3.pem"
--outfile ltv-signed.pdf input.pdf

For the next example we assume that the required OCSP or CRL retrieval information is
present in the signing certificate, which is typically the case for commercial certificates.
Under these conditions you can supply the option ltv=full to make sure that an LTV-en-
abled signature is created:

plop --signopt "digitalid={filename=signer.p12} passwordfile=pw.txt ltv=full
rootcertfile=RootCA.pem" --outfile ltv-signed.pdf input.pdf

Note that this may not be sufficient depending on the details of the involved PKI. In
particular, revocation information must also be available for the OCSP/CRL signer and
the timestamp authority.

2.7 PAdES Signatures
The PAdES family of signature standards improves PDF signatures and ensures that EU
requirements are met. Various signature options can be used to create signatures ac-
cording to different PAdES flavors. For example, the following command-line creates a
basic signature according to PAdES part 3 (PAdES Level B-B):

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
--outfile signed.pdf input.pdf

The following command-line creates a signature according to PAdES part 3 with explicit
policy identifier (PAdES Level E-EPES):

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
policy={oid=2.16.276.1.89.1.1.1.1.3 commitmenttype=origin}"
--outfile signed.pdf input.pdf

More details are available in Section 7.7, »The CAdES and PAdES Signature Standards«,
page 129.

36 Chapter 2: PLOP DS Features (Digital Signature)

2.8 Visualize Digital Signatures
A digital signature can be visualized, e.g. by a company logo or the scan of a handwrit-
ten signature. The visual representation must be supplied as a PDF document which
will be placed in the signature form field. If the input document does not yet contain a
signature field suitable field coordinates must be supplied. The following command-
line places the visualization document signing_man.pdf in the field rectangle:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
field={name=Signature1 rect={10 10 adapt adapt}}" --visdoc signing_man.pdf
--outfile signed.pdf input.pdf

More details are available in Section 7.3.1, »Visualizing Signatures with a Graphic or Lo-
go«, page 102.

2.9 Query Digital Signatures
Querying general signature properties. With the pCOS programming interface which
is integrated in PLOP DS you can query signature settings of a PDF document. The pCOS
Cookbook topic signatures demonstrates how to query signature types and details. Sam-
ple code for querying document information with pCOS can be seen in the dumper mini
sample, which is included in all PLOP packages. The pCOS command-line tool can be
used to query information from PDF documents without any programming (see Section
1.6, »Query Document Information with pCOS«, page 22):

pcos *.pdf

This program call creates output similar to the following:

File name: hellosign.pdf
File size: 166699

 PDF version: 1.7
Revisions: 0
Master pw: false

User pw: false

...
Tagged PDF: false
Signatures: 1

signature field 'Signature1': invisible approval signature, CAdES
Reader-enabled: false

When working with the pCOS programming interface you can use the signaturefields[]
pseudo object to retrieve details about the signatures in a PDF document (see pCOS Path
Reference for details).

Extracting CMS signature objects. The following command extracts the CMS object
with cryptographic details in DER format from a signed document:

pcos --binary --pcospath signaturefields[0]/V/Contents[0]/V/Contents
--outfile signature.der input.pdf

http://www.pdflib.com/pcos-cookbook/interactive/signatures/

2.9 Query Digital Signatures 37

The extracted DER-encoded CMS object can further be analyzed, e.g. with the OpenSSL
command-line tool:

openssl cms -in signature.der -inform DER -cmsout -print

3.1 PLOP and PLOP DS Command-line Options 39

3 PLOP and PLOP DS Command-line
Tool

Note Also take a look at the pCOS command-line tool which is discussed in a separate manual.

3.1 PLOP and PLOP DS Command-line Options
The combined command-line tool for PLOP and PLOP DS allows you to encrypt, decrypt,
optimize, repair, and sign one or more PDF documents without the need for any pro-
gramming. In addition, it can be used to query the status of PDF documents. The PLOP
program can be controlled via a number of command-line options. It is called as follows
for one or more input PDF files (items in square brackets are optional):

plop --help
plop [<general options>] <transform options> --outfile <filename> <filename>
plop [<general options>] <transform options> --targetdir <pathname> <filename>...

The PLOP command-line tool is built on top of the PLOP library. By default PLOP repairs
input documents which are found to be damaged. You can supply library options using
the --inputopt, --outputopt, --plopopt,--signopt and --visdocopt options according to the op-
tion tables in Chapter 8, »PLOP and PLOP DS Library API Reference«, page 135. Table 3.1
lists all PLOP command-line options.

Table 3.1 PLOP command-line options

option parameters function

-- End the list of options; useful for file names which start with a - character.

@filename1 Specify a response file with the name filename which contains options; for a
syntax description see »Response files«, page 41. Response files will only be
recognized before the -- option and before the first filename, and can not
be used to replace the parameter for another option.

--help, -?
(or no option)

Display help with a summary of available options.

--inputopt <option list> Option list for open_document() (see Table 8.3, page 142)

--master, -m <password> Output master password; missing option means no password

--noreplace, -n If the output file already exists, it will not be overwritten and an exception
will be thrown. Default: existing output files will be overwritten.

--outfile, -o <filename> (Requires exactly one input document; one of --outfile and --targetdir
must be supplied) Output file name; input and output file name must be dif-
ferent.

--outputopt <option list> Option list for create_document() (see Table 8.4, page 146)

--password, -p <password> User or master password for input document(s). This password is used for all
input documents. Documents which require different passwords must be
processed in separate program calls.
If a digital ID has been supplied with --inputopt, the password is applied to
the ID.

40 Chapter 3: PLOP and PLOP DS Command-line Tool

--permissions <permissions> (Requires --master or --recipient) Access permission list for the output
document. It contains any number of the noprint, nomodify, nocopy,
noannots, noassemble, noforms, noaccessible, nohiresprint, and
plainmetadata keywords (see Table 5.3, page 66). In addition, the following
keyword can be used (default: no permission restrictions):
keep Keep the permission settings of the input document. This setting

can be amended by additional keywords in order to modify the
permission settings of the input PDF, e.g. keep noprint.

In certificate security mode (option --recipient) only plainmetadata is al-
lowed. Other permission restrictions can be specified in the permissions op-
tion of the --recipient option list.

--plopopt <option list> Option list for set_option() (see Table 8.12, page 165). This can be used to pass
the license or licensefile options.

--recipient, -r1 <option list> Option list for add_recipient() to add a recipient for documents protected
with certificate security. Supplying this option at least once activates certifi-
cate security mode. The recipient is used for all input files. This option must
not be combined with --master/-m and --user/-u.

--recsize <blocksize> (MVS only) Record size of the output file. Default: 0 (unblocked)

--searchpath, -s1 <path> Name of a directory where files will be searched. The path must not start
with a minus character »-« (prepend ./ if required). Default: current directo-
ry

--signopt, -S <option list> (Only available in PLOP DS) Option list for prepare_signature() for digitally
signing documents (see Table 8.7, page 153).

--targetdir, -t <dirname> (One of --outfile and --targetdir must be supplied) Output directory
name; the directory must already exist.

--tempdirname <dirname> Name of a directory where temporary files needed for PLOP’s internal pro-
cessing will be created. If empty, PLOP will generate temporary files in the
current directory. Default: empty

--tempfilename, -T <filename> (MVS only) Full file name for a temporary file for PLOP’s internal processing. If
empty, PLOP will generate a unique temporary file name. The user is respon-
sible for deleting the temporary file when PLOP finished. Default: empty

--user, -u <password> (Requires --master) Output user password; missing option means no pass-
word

--verbose, -v 0, 1, 2, 3 Verbosity level (default: 1):
0 no output
1 only error messages
2 add file names and API method name in error messages
3 detailed reporting

--visdoc <filename> (Only with --signopt) Name of the PDF file from which a page will be used
for visualizing the digital signature.

--visdocopt <option list> (Only with --visdoc) Option list for open_document() (see Table 8.3, page
142) which is used to open the signature visualization document

--webopt, -w Linearize the PDF output for Web delivery, also known as Web optimization.
Default: no linearization

1. This option can be supplied more than once.

Table 3.1 PLOP command-line options

option parameters function

3.1 PLOP and PLOP DS Command-line Options 41

Constructing PLOP command lines. The following rules must be obeyed for construct-
ing PLOP command lines:

> Input files will be searched in all directories specified as searchpath.
> Short forms are available for some options, and can be mixed with long options.
> Long options can be abbreviated provided the abbreviation is unique (e.g. --plop in-

stead of --plopopt).
> If an option is supplied more than once only the last instance will be taken into ac-

count. However, this rule does not hold for options which are marked as repeatable
in Table 3.1.

> Depending on the encryption status of the input file, a user or master password may
be required for processing. This must be supplied with the --password option. PLOP
will check whether this password is sufficient for the requested action (see Table 5.2),
and will throw an exception if it isn’t.

PLOP checks the full command line before processing any file. If an option syntax error
is encountered in the options anywhere on the command line, no files will be processed
at all. If a particular file cannot be processed (e.g. because the required password is miss-
ing), an error message will be emitted, and PLOP will continue processing the remaining
files.

File names. File names which contain blank characters require some special handling
when used with command-line tools like PLOP. In order to process a file name with
blank characters you should enclose the complete file name with double quote " charac-
ters. Wildcards can be used according to standard practice. For example, *.pdf denotes all
files in a given directory which have a .pdf file name suffix. Note that on some systems
case is significant, while on others it isn’t (i.e., *.pdf may be different from *.PDF). Also
note that on Windows systems wildcards do not work for file names containing blank
characters. Wildcards will be evaluated in the current directory, not any searchpath di-
rectory.

On Windows all file name options accept Unicode strings, e.g. as a result of dragging
files from the Explorer to a command prompt window.

Response files. In addition to options supplied directly on the command-line, options
can also be supplied in a response file. The contents of a response file are inserted in the
command-line at the location where the @filename option was found.

A response file is a simple text file with options and parameters. It must adhere to
the following syntax rules:

> Option values must be separated with whitespace, i.e. space, linefeed, return, or tab.
> Values which contain whitespace must be enclosed with double quotation marks: "
> Double quotation marks at the beginning and end of a value are omitted.
> A double quotation mark must be masked with a backslash to use it literally: \"
> A backslash character must be masked with another backslash to use it literally: \\

Response files can be nested, i.e. @filename can be used in another response file.
Response files may contain Unicode strings for file name and password options. Re-

sponse files can be encoded in UTF-8, EBCDIC-UTF-8, or UTF-16 format and must start
with the corresponding BOM. If no BOM is found, the contents of the response file are
interpreted in EBCDIC on zSeries, and in ISO 8859-1 (Latin-1) on all other systems.

42 Chapter 3: PLOP and PLOP DS Command-line Tool

Exit codes. The PLOP command-line tool returns with an exit code which can be used
to check whether or not the requested operations could be successfully carried out:

> Exit code 0: all command-line options and input files could be successfully and fully
processed.

> Exit code 1: one or more file processing errors occurred, but processing continued.
> Exit code 2: some error was found in the command-line options. Processing stopped

at the particular bad option, and no documents have been processed.

3.2 PLOP and PLOP DS Command-line Examples 43

3.2 PLOP and PLOP DS Command-line Examples
The following examples demonstrate some useful combinations of PLOP command-
line options. All samples are shown in two variations; the first uses the long format of
all options, while the second uses the equivalent short option format. More examples
are available in the following sections:

> Chapter 1, »PLOP Features«, page 17 (various sections);
> Section 5.3, »Applying Password Security on the Command-Line«, page 68;
> Section 6.5, »Applying Certificate Security on the Command-Line«, page 84;
> Section 7.2, »Signing with PLOP DS«, page 93.

Linearize all PDF documents in a directory (assuming these do not require any pass-
word), and copy the resulting files to the target directory output. Verbosity level 2 prints
the names of all input and output files as they are processed:

plop --verbose 2 --webopt --targetdir output *.pdf
plop -v 2 -w -t output *.pdf

Encrypt all files in the current directory with the same user password demo and master
password DEMO, and place the resulting files in the target directory output:

plop --targetdir output --user demo --master DEMO *.pdf
plop -t output -u demo -m DEMO *.pdf

Encrypt a document against a single recipient certificate:

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--outfile protected.pdf input.pdf

plop -r "certificate={filename=demo_recipient_1.pem}" -o protected.pdf input.pdf

Create an invisible signature for a PDF document, using a digital ID from the file
demo_signer_rsa_2048.p12. The password for the digital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

plop -S "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt"
-o signed.pdf input.pdf

Create a signature, using an existing PDF with a hand-written signature to visualize the
signature:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
field={rect={100 100 300 adapt}}" --visdoc signature.pdf
--outfile signed.pdf input.pdf

plop -S "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
field={rect={100 100 300 adapt}}" --visdoc signature.pdf -o signed.pdf input.pdf

4.1 C Binding 45

4 PLOP and PLOP DS Library
Language Bindings

4.1 C Binding
PLOP is written in C with some C++ modules. In order to use the C binding you can use a
static or shared library (DLL/SO), and you need the central PLOP include file ploplib.h for
inclusion in your client source modules. Alternatively, ploplibdl.h can be used for dy-
namically loading the PLOP DLL at runtime (see next section for details).

Note Applications which use the PLOP binding for C must be linked with a C++ compiler since the li-
brary includes some parts which are implemented in C++. Using a C linker may result in unre-
solved externals unless the application is explicitly linked against the required C++ support li-
braries.

Error handling. The PLOP API provides a mechanism for acting upon exceptions
thrown by the library in order to compensate for the lack of native exception handling
in the C language. Using the PLOP_TRY() and PLOP_CATCH() macros client code can be set
up such that a dedicated piece of code is invoked for error handling and cleanup when
an exception occurs. These macros set up two code sections: the try clause with code
which may throw an exception, and the catch clause with code which acts upon an ex-
ception. If any of the API methods called in the try block throws an exception, program
execution will continue at the first statement of the catch block immediately. The fol-
lowing rules must be obeyed in PLOP client code:

> PLOP_TRY() and PLOP_CATCH() must always be paired.
> PLOP_new() will never throw an exception; since a try block can only be started with

a valid PLOP object handle, PLOP_new() must be called outside of any try block.
> PLOP_delete() will never throw an exception, and therefore can safely be called out-

side of any try block. It can also be called in a catch clause.
> Special care must be taken about variables that are used in both the try and catch

blocks. Since the compiler doesn’t know about the transfer of control from one block
to the other, it might produce inappropriate code (e.g., register variable optimiza-
tions) in this situation.
Fortunately, there is a simple rule to avoid this kind of problem: Variables used in
both the try and catch blocks must be declared volatile. Using the volatile keyword sig-
nals to the compiler that it must not apply dangerous optimizations to the variable.

> If a try block is left (e.g., with a return statement, thus bypassing the invocation of
the corresponding PLOP_CATCH()), the PLOP_EXIT_TRY() macro must be called before
the return statement to inform the exception machinery.

> As in all PLOP language bindings document processing must stop when an exception
was thrown.

The following code fragment demonstrates these rules with the typical idiom for deal-
ing with PLOP exceptions in client code (full samples can be found in the PLOP package):

if ((plop = PLOP_new()) == (PLOP *) 0)
{

46 Chapter 4: PLOP and PLOP DS Library Language Bindings

printf("Couldn't create PLOP object out of memory\n");
return(2);

}
PLOP_TRY(plop)
{

/* statements that directly or indirectly call API methods */
}
PLOP_CATCH(plop)
{

printf("Error %d in %s(): %s\n",
PLOP_get_errnum(plop), PLOP_get_apiname(plop),PLOP_get_errmsg(plop));

}
PLOP_delete(plop);

Unicode handling for name strings. The C programming language supports genuine
Unicode strings only in version C11. Since this version is not yet generally supported,
PLOP/PLOP DS offers Unicode support based on the traditional char data type. Some
string parameters for API methods may be declared as name strings. These are handled
depending on the length parameter and the existence of a BOM at the beginning of the
string. In C, if the length parameter is different from 0 the string will be interpreted as
UTF-16. If the length parameter is 0 the string will be interpreted as UTF-8 if it starts with
a UTF-8 BOM, or as EBCDIC UTF-8 if it starts with an EBCDIC UTF-8 BOM, or as host en-
coding if no BOM is found (or ebcdic on EBCDIC-based platforms).

Unicode handling for option lists. Strings within option lists require special attention
since they cannot be expressed as Unicode strings in UTF-16 format, but only as byte ar-
rays. For this reason UTF-8 is used for Unicode options. By looking for a BOM at the be-
ginning of an option PLOP decides how to interpret it. The BOM will be used to deter-
mine the format of the string. More precisely, interpreting a string option works as
follows:

> If the option starts with a UTF-8 BOM (\xEF\xBB\xBF) it will interpreted as UTF-8.
> If the option starts with an EBCDIC UTF-8 BOM (\x57\x8B\xAB) it will be interpreted as

EBCDIC UTF-8.
> If no BOM is found, the string will be treated as winansi (or ebcdic on EBCDIC-based

platforms).

Note The PLOP_convert_to_unicode() utility method can be used to create UTF-8 strings from UTF-
16 strings, which is useful for creating option lists with Unicode values.

Using PLOP as a DLL loaded at runtime. While most clients will use PLOP as a statically
bound library or a dynamic library which is bound at link time, you can also load the
DLL at runtime and dynamically fetch pointers to all API methods. This is especially use-
ful to load the DLL only on demand. PLOP supports a special mechanism to facilitate
this dynamic usage. It works according to the following rules:

> Include ploplibdl.h instead of ploplib.h.
> Use PLOP_new_dl() and PLOP_delete_dl() instead of PLOP_new() and PLOP_delete().
> Use PLOP_TRY_DL() and PLOP_CATCH_DL() instead of PLOP_TRY() and PLOP_CATCH().
> Use function pointers for all other PLOP calls.
> Compile the auxiliary module ploplibdl.c and link your application against the result-

ing object file.

The dynamic loading mechanism is demonstrated in the encryptdl.c sample.

4.2 C++ Binding 47

4.2 C++ Binding
In addition to the ploplib.h C header file, an object-oriented wrapper for C++ is supplied
for PLOP clients. It requires the plop.hpp header file, which in turn includes ploplib.h.
Since plop.hpp contains a template-based implementation no corresponding plop.cpp
module is required. Using the C++ object wrapper replaces the functional approach with
API methods and PLOP_ prefixes in all PLOP function names with a more object-orient-
ed approach.

String handling in C++. PLOP’s template-based approach supports the following usage
patterns with respect to string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior and the recommended approach for new applications unless custom data
types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods.

The default interface assumes that all strings passed to and received from PLOP meth-
ods are native wstrings. Depending on the size of the wchar_t data type, wstrings are as-
sumed to contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-
byte characters). Literal strings in the source code must be prefixed with L to designate
wide strings. Unicode characters in literals can be created with the \u and \U syntax. Al-
though this syntax is part of standard ISO C++, some compilers don’t support it. In this
case literal Unicode characters must be created with hex characters.

Note On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option
lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utf16num_ebcdic.hpp.

Error handling in C++. PLOP API methods throw a C++ exception in case of an error.
These exceptions must be caught in the client code by using C++ try/catch clauses. In or-
der to provide extended error information the PLOP class provides a public
PLOP::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PLOP API method which threw the excep-
tion.

Native C++ exceptions thrown by PLOP routines will behave as expected. The follow-
ing code fragment will catch exceptions thrown by PLOP:

try {
...some PLOP instructions...

} catch (PLOP::Exception &ex) {
wcerr << L"Error " << ex.get_errnum()
<< L" in " << ex.get_apiname()
<< L"(): " << ex.get_errmsg() << endl;

}

Using PLOP as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach PLOP to your application at runtime (see »Us-

48 Chapter 4: PLOP and PLOP DS Library Language Bindings

ing PLOP as a DLL loaded at runtime«, page 46). Dynamic loading can be enabled as fol-
lows when compiling the application module which includes plop.hpp:

#define PLOPCPP_DL 1

In addition you must compile the auxiliary module ploplibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
PLOP object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled.

4.3 Java Binding 49

4.3 Java Binding
Installing the PLOP Edition for Java. PLOP/PLOP DS has been implemented as a native
C library which attaches to Java via the JNI (Java Native Interface). Obviously, for devel-
oping Java applications you will need the JDK which includes support for the JNI. For
the PLOP binding to work, the Java VM must have access to the PLOP Java wrapper li-
brary and the PLOP Java package.

The PLOP Java package. In order to maintain a consistent look-and-feel for the Java
developer, PLOP is organized as a Java package with the following package name:

com.pdflib.plop

This package is available in the plop.jar file and contains a single class called plop. Last-
minute comments on using PLOP in various Java development environments may be
found in the readme.txt file.

In order to supply this package to your application, you must add plop.jar to your
CLASSPATH environment variable, add the option -classpath plop.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. You can con-
figure the Java VM to search for native libraries in a given directory by setting the
java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. encrypt

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:
> Unix: The library libplop_java.so must be placed in one of the default locations for

shared libraries, or in an appropriately configured directory.
> macOS: The library libplop_java.jnilib must be placed in one of the default locations

for shared libraries, or in an appropriately configured directory.
> Windows: The library plop_java.dll must be placed in the Windows system directory,

or a directory which is listed in the PATH environment variable.

PLOP servlets and Java application servers. PLOP/PLOP DS is perfectly suited for serv-
er-side Java applications, especially servlets. When using PLOP with a specific servlet en-
gine the following configuration issues must be observed:

> The directory where the servlet engine looks for native libraries varies among ven-
dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PLOP package will be found.

Examples for using PLOP within servlets are contained in the PLOP distribution.

50 Chapter 4: PLOP and PLOP DS Library Language Bindings

Exception Handling in Java. All PLOP/PLOP DS methods will throw an exception of
type PLOPException in case of an error. PLOP users can use standard Java language fea-
tures to catch the exception and react on it:

try {
plop plop;
/* ... PLOP statements ... */

} catch (PLOPException e) {
System.err.println("encrypt: PLOP Exception occurred:");
System.err.println(e.get_apiname() +": " + e.get_errmsg());

} catch (Exception e) {
System.err.println(e);

} finally {
/* delete the PLOP object */
if (plop != null) plop.delete();

}

4.4 .NET Binding 51

4.4 .NET Binding
4.4.1 .NET Binding Variants

The PLOP/PLOP DS binding for .NET is available in two variants:
> .NET Core binding based on C# Interop
> Classic .NET binding based on C++ Interop

Both .NET bindings differ in implementation details and supported target environ-
ments according to Table 4.1. Based on this information you can choose the binding
which is best suited for your application.

4.4.2 .NET Core Binding
PLOP for .NET Core supports the .NET Standard 2.0 which implies support for .NET Core
2.0, .NET Framework 4.6.1, Mono 5.4 and newer versions, as well as many other environ-
ments. You need the .NET Core SDK for the desired target platform.

The version scheme used for the .NET Core binding conforms to .NET versioning
rules. The .NET Core version numbers are visible e.g. in the NuGet cache and .csproj proj-
ect files. These version numbers are not identical to PLOP major and minor release
numbers. A mapping between both versioning schemes can be found in compatibili-
ty.txt.

The product is supplied as NuGet package which can be installed locally using any of
the following methods:

> The dotnet command-line tool (all platforms). This method is detailed in the next
section.

> Visual Studio’s Package Manager UI (Windows and macOS)
> Visual Studio’s Package Manager Console (Windows)
> The nuget command-line tool (all platforms)

Table 4.1 Comparison of the classic .NET binding and .NET Core binding

 Classic .NET binding based on C++ Interop .NET Core binding based on C# Interop

download package Windows installer platform-specific zip or tar.gz package

package contents assembly, documentation, samples NuGet package with assembly, documenta-
tion, samples

implementation C++/CLI assembly PLOP_dotnet.dll with
unmanaged code

C# assembly PLOP_dotnet.dll with man-
aged code and auxiliary DLL
PLOP_dotnetcore_native.dll
with unmanaged code

.NET integration C++ Interop via implicit PInvoke C# Interop via explicit PInvoke

support for .NET Framework .NET Framework 4.x .NET Framework 4.6.1 and above

support for .NET Core n/a .NET Standard 2.0

target operating systems Windows x86 and x64 Windows x64, Linux Intel 64, macOS

Windows registry handling installer registers PLOP and adds the license
key to the registry

registration not required; registry entries
for the license key must be added manually

class name PLOP_dotnet PLOP_dotnet

52 Chapter 4: PLOP and PLOP DS Library Language Bindings

The project files for the supplied samples are prepared for target framework .NET Core
2.0 (target framework moniker TFM=netcoreapp2.0). You may want to adjust the TFM in
the project files if you want to target a different framework, e.g.

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>

</PropertyGroup>

Installing PLOP for .NET Core with the dotnet command-line tool. We describe the in-
stallation, configuration and build process with the dotnet utility, using the supplied
encrypt project as an example:

> Unpack the compressed product package in a directory of your choice.
> In a command shell cd to the extractor project directory:

cd <installdir>\bind\dotnetcore\C#\encrypt

> (This step is not required for the supplied samples which reference the package with
a local NuGet.Config file) Copy the NuGet package to the application’s project directo-
ry:

<installdir>/bind/dotnetcore/PLOP_dotnet.X.Y.Z.nupkg

> (This step is not required for the supplied samples which already contain a reference
to PLOP) Enter the following command with the appropriate version number (the
version number can be found in the name of the .nupkg file):

dotnet add package PLOP_dotnet X.Y.Z

This command adds a PLOP reference to the .csproj project file. It also installs PLOP in
the local NuGet package cache if it is not yet present, e.g.

~/.nuget/packages/plop_dotnet/X.Y.Z

Because of this caching you must copy the *.nupkg only for the first project. Subse-
quent projects don’t require the package file since it is taken from the cache.

> Now you can build and run the encrypt project to test it:

dotnet build
dotnet run

As a result you will find the encrypted output file in the application directory.

4.4.3 Classic .NET Binding
Note Detailed information about the classic .NET binding can be found in the PDFlib-in-.NET-

HowTo.pdf document which is contained in the distribution packages and also available on the
PDFlib Web site.

Installing the classic .NET binding. Install PLOP with the supplied Windows installer. It
installs the PLOP assembly plus auxiliary data files, documentation and samples on the
machine interactively. The installer also registers PLOP so that it can easily be refer-
enced on the .NET tab in the Add Reference dialog box of Visual Studio.

Referencing the .NET binding in a C# project. In order to use the .NET binding in a C#
project you must create a reference to the PLOP assembly as follows in Visual C# .NET:

4.4 .NET Binding 53

Project, Add Reference..., Browse..., and select PLOP_dotnet.dll from the installation directo-
ry. With the command line compiler you can reference PLOP as in the following exam-
ple:

csc.exe /r:..\..\bin\PLOP_dotnet.dll encrypt.cs

4.4.4 Using the .NET Binding in Applications
This section applies to both variants of the .NET binding. Full examples with ready-to-
use configuration are included in all packages.

Once the .NET binding is properly referenced you can use the PLOP_dotnet.PLOP and
PLOP_dotnet.PLOPException classes.

Error handling. The .NET binding supports .NET exceptions and throws an exception
with a detailed error message when a runtime problem occurs. The client is responsible
for catching such an exception and properly reacting on it. Otherwise the .NET frame-
work will catch the exception and usually terminate the application.

In order to convey exception-related information PLOP defines its own exception
class PLOP_dotnet.PLOPException with the members get_errnum, get_errmsg, and get_api-
name. PLOP implements the IDisposable interface which means that clients can call the
Dispose() method for cleanup.

Client code can handle .NET exceptions thrown by PLOP with the usual try...catch con-
struct:

try {
plop = new PLOP();
...PLOP instructions...

} catch (PLOPException e) {
// caught exception thrown by PLOP
Console.WriteLine("PLOP exception occurred in encrypt sample:");
Console.WriteLine("[{0}] {1}: {2}\n",

e.get_errnum(), e.get_apiname(), e.get_errmsg());
} finally {

if (plop != null) {
plop.Dispose();

}
}

54 Chapter 4: PLOP and PLOP DS Library Language Bindings

4.5 Objective-C Binding
Although the C and C++ language bindings can be used with Objective-C, a genuine lan-
guage binding for Objective-C is also available. The PLOP framework is available in the
following flavors:

> PLOP for use on macOS
> PLOP_ios for use on iOS

Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the PLOP Edition for Objective-C on macOS. In order to use PLOP in your ap-
plication you must copy PLOP.framework or PLOP_ios.framework to the directory /Library/
Frameworks. Installing the PLOP framework in a different location is possible, but re-
quires use of Apple’s install_name_tool which is not described here. The PLOP_objc.h
header file with PLOP method declarations must be imported in the application source
code:

#import "PLOP/PLOP_objc.h"

or

#import "PLOP_ios/PLOP_objc.h"

In order to embed the PLOP/PLOP DS framework in an app, XCode’s code signing expects
a framework with the version number A while PDFlib products use numeric version
numbers. In order to get around this you can create an appropriately named framework
folder as follows:

cd PLOP.framework/Versions
mv 5.4 A
rm Current
ln -s A Current

Parameter naming conventions. For PLOP method calls you must supply parameters
according to the following conventions:

> The value of the first parameter is provided directly after the method name, separat-
ed by a colon character.

> For each subsequent parameter the parameter’s name and its value (again separated
from each other by a colon character) must be provided. The parameter names can
be found in Chapter 8, »PLOP and PLOP DS Library API Reference«, page 135, and in
PLOP_objc.h.

For example, the following line in the API description:

int open_document(wstring filename, wstring optlist)

corresponds to the following Objective-C method:

- (NSInteger) open_document: (NSString *) filename optlist: (NSString *) optlist;

This means your application must make a call similar to the following:

doc = [plop open_document:filename optlist:pageoptlist];

4.5 Objective-C Binding 55

Xcode Code Sense for code completion can be used with the PLOP framework.

Error handling in Objective-C. The Objective-C binding translates PLOP errors to native
Objective-C exceptions. In case of a runtime problem PLOP throws a native Objective-C
exception of the class PLOPException. These exceptions can be handled with the usual
try/catch mechanism:

@try {
...some PLOP instructions...

}
@catch (PLOPException *ex) {

NSString * errorMessage =
[NSString stringWithFormat:@"PLOP error %d in '%@': %@",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]];

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: errorMessage];
[alert runModal];
[alert release];

}
@catch (NSException *ex) {

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: [ex reason]];
[alert runModal];
[alert release];

}
@finally {

[plop release];
}

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

56 Chapter 4: PLOP and PLOP DS Library Language Bindings

4.6 Perl Binding
The PLOP wrapper for Perl consists of a C wrapper and two Perl package modules, one
for providing a Perl equivalent for each PLOP API method and another one for the PLOP
object. The C module is used to build a shared library which the Perl interpreter loads at
runtime, with some help from the package file. Perl scripts refer to the shared library
module via a use statement.

Installing the PLOP Edition for Perl. The Perl extension mechanism loads shared li-
braries at runtime through the DynaLoader module. The Perl executable must have
been compiled with support for shared libraries (this is true for the majority of Perl con-
figurations).

For the PLOP binding to work, the Perl interpreter must access the PLOP Perl wrapper
and the modules plop_pl.pm and PDFlib/PLOP.pm. In addition to the platform-specific
methods described below you can add a directory to Perl’s @INC module search path us-
ing the -I command line option:

perl -I/path/to/plop encrypt.pl

Unix. Perl will search plop_pl.so (on macOS: plop_pl.bundle), plop_pl.pm and PDFlib/
PLOP.pm in the current directory, or the directory printed by the following Perl com-
mand:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/plop_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.16/i686-linux

Windows. The DLL plop_pl.dll and the modules plop_pl.pm and PDFlib/PLOP.pm will be
searched in the current directory, or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.16\site\lib

Exception Handling in Perl. When a PLOP exception occurs, a Perl exception is thrown.
It can be caught and acted upon using an eval sequence:

eval {
...some PLOP instructions...

};
die "Exception caught: $@" if $@;

4.7 PHP Binding 57

4.7 PHP Binding
Note Detailed information about the various flavors and options for using PLOP with PHP can be

found in the PDFlib-in-.NET-HowTo.pdf document which is contained in the distribution pack-
ages and also available on the PDFlib Web site. Although it is mainly targeted at using PDFlib
with PHP the discussion applies equally to using PLOP with PHP.

Installing the PLOP Edition for PHP. PLOP/PLOP DS is implemented as a C library which
can dynamically be attached to PHP. PLOP supports several versions of PHP. Depending
on the version of PHP you use you must choose the appropriate PLOP library from the
unpacked PLOP archive.

You must configure PHP so that it knows about the external PLOP library. You have
two choices:

> Add one of the following lines in php.ini:

extension=plop_php.so ; for Unix and macOS
extension=plop_php.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PLOP binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled plop. If this section contains the phrase

PDFlib PLOP (PDF Linearization, Optimization, Protection and Digital Signature) =>
enabled

(plus the PLOP version number) you successfully installed PLOP for PHP.
> Load PLOP at runtime with one of the following lines at the start of your script:

dl("plop_php.so"); # for Unix and macOS
dl("plop_php.dll"); # for Windows

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located.

Exception handling in PHP. Since PHP supports structured exception handling, PLOP
exceptions will be propagated as PHP exceptions. You can use the standard try/catch
technique to deal with PLOP exceptions:

try {

...some PLOP instructions...

} catch (PLOPException $e) {
print "PLOP exception occurred:\n";

58 Chapter 4: PLOP and PLOP DS Library Language Bindings

print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "
$e->get_errmsg() . "\n";

}
catch (Exception $e) {

print $e;
}

Developing with Eclipse and Zend Studio. The PHP Development Tools (PDT) support
PHP development with Eclipse and Zend Studio. PDT can be configured to support con-
text-sensitive help with the steps outlined below.

Add PLOP to the Eclipse preferences so that it will be known to all PHP projects:
> Select Window, Preferences, PHP, PHP Libraries, New... to launch a wizard.
> In User library name enter PLOP, click Add External folder... and select the folder

bind\php\Eclipse PDT.

In an existing or new PHP project you can add a reference to the PLOP library as follows:
> In the PHP Explorer right-click on the PHP project and select Include Path, Configure

Include Path...
> Go to the Libraries tab, click Add Library..., and select User Library, PLOP.

After these steps you can explore the list of PLOP methods under the PHP Include Path/
PLOP/PLOP node in the PHP Explorer view. When writing new PHP code Eclipse assists
with code completion and context-sensitive help for all PLOP methods.

4.8 Python Binding 59

4.8 Python Binding
Installing the PLOP edition for Python. The Python extension mechanism works by
loading shared libraries at runtime. For the PLOP binding to work, the Python interpret-
er must have access to the PLOP Python wrapper which will be searched in the directo-
ries listed in the PYTHONPATH environment variable. The name of Python wrapper de-
pends on the platform:

> Unix and macOS: plop_py.so
> Windows: plop_py.pyd

Error Handling in Python. The Python binding installs a special error handler which
translates PLOP errors to native Python exceptions. The Python exceptions can be dealt
with by the usual try/except technique:

try:
plop = PLOP()
...some PLOP instructions...

except PLOPException as ex:
 print("PDFlib PLOP exception occurred:")
 print("[%d] %s: %s" % (ex.errnum, ex.apiname, ex.errmsg))

except Exception as ex:
 print(ex)

finally:
 if plop:
 plop.delete()

60 Chapter 4: PLOP and PLOP DS Library Language Bindings

4.9 Ruby Binding
Installing the PLOP Ruby edition. The Ruby extension mechanism works by loading a
shared library at runtime. For the PLOP binding to work, the Ruby interpreter must have
access to the PLOP extension library for Ruby. This library (on Windows and Unix:
PLOP.so; on macOS: PLOP.bundle) will usually be installed in the site_ruby branch of the lo-
cal ruby installation directory, i.e. in a directory with a name similar to the following:

/usr/local/lib/ruby/site_ruby/<version>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list usually includes the current directory, so for testing purposes you can simply
place the PLOP extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs an error handler which translates
PLOP exceptions to native Ruby exceptions. The Ruby exceptions can be dealt with by
the usual rescue technique:

begin
...some PLOP instructions...

rescue PLOPException => pe
print "PLOP exception occurred in encrypt sample:\n"
print "[" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg + "\n"

end

5.1 Password Security in PDF 61

5 Password Security
5.1 Password Security in PDF

PDF password security offers the following protection features:
> The user password (also referred to as open password) is required to open the file for

viewing.
> The master password (also referred to as owner or permissions password) is required

to change any security settings, i.e. permissions, user or master password. Files with
user and master passwords can be opened for viewing by supplying either password.

> Permission settings restrict certain actions for the PDF document, such as printing
or extracting text.

> An attachment password can be specified to encrypt only file attachments, but not
the actual contents of the document itself.

If a PDF document uses any of these protection features it is encrypted. In order to dis-
play or modify a document’s security settings with Acrobat, click File, Properties..., Secu-
rity, Show Details... or Change Settings..., respectively. Figure 5.1 shows the security set-
tings dialog in Acrobat.

Fig. 5.1
Viewing (left) and changing (below)
password security settings in Acrobat

62 Chapter 5: Password Security

Encryption algorithms and key lengths. PDF encryption makes use of the following
encryption algorithms:

> RC4, a symmetric stream cipher (i.e. the same algorithm can be used to encrypt and
decrypt). RC4 no longer offers adequate security and has been deprecated in PDF 2.0.

> AES (Advanced Encryption Standard) specified in the standard FIPS-197. AES is a mod-
ern block cipher which is used in a variety of applications.

Since the actual encryption keys are unwieldy binary sequences, they are derived from
more user-friendly passwords which consist of plain characters. In the course of PDF
and Acrobat development the PDF encryption methods have been enhanced to use
stronger algorithms, longer encryption keys, and more sophisticated passwords. Table
5.1 details encryption, key and password characteristics for all PDF versions.

Passwords. PDF encryption internally works with encryption keys of 40, 128, or 256 bit
depending on the PDF version. The binary encryption key is derived from a password
provided by the user. The password is subject to length and encoding constraints:

> Up to PDF 1.7 (ISO 32000-1) passwords were restricted to a maximum length of 32
characters and could contain only characters from the Latin-1 encoding.

> PDF 1.7ext3 introduced Unicode characters and bumped the maximum length to 127
bytes in the UTF-8 representation of the password. Since UTF-8 encodes characters
with a variable length of 1-4 bytes the allowed number of Unicode characters in the
password is less than 127 if it contains non-ASCII characters. For example, since Japa-
nese characters usually require 3 bytes in UTF-8 representation, up to 42 Japanese
characters can be used in passwords.

In order to avoid ambiguities, Unicode passwords are normalized by a process called
SASLprep (specified in RFC 4013 based on Stringprep in RFC 3454). This process eliminates
non-text characters and normalizes certain character classes (e.g. non-ASCII space char-
acters are mapped to the ASCII space character U+0020). The password is normalized to
Unicode normalization form NFKC, and special bidirectional processing is applied to

Table 5.1 Encryption algorithms, key length, and password length in PDF versions

PDF and Acrobat version,
pCOS algorithm number encryption algorithm and key length

max. password length and
password encoding

PDF 1.1 - 1.3 (Acrobat 2-4),
pCOS algorithm 1

RC4 40-bit (weak; deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.4 (Acrobat 5),
pCOS algorithm 2

RC4 128-bit (weak; deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.5 (Acrobat 6),
pCOS algorithm 3

RC4 128-bit as in PDF 1.4, but different application
of encryption method (weak; deprecated in PDF
2.0)

32 characters (Latin-1)

PDF 1.6 (Acrobat 7) and
PDF 1.7 = ISO 32000-1 (Acrobat 8),
pCOS algorithm 4

AES-128 (deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.7ext3 (Acrobat 9),
pCOS algorithm 9

AES-256 with shortcomings in password handling
(weak; deprecated in PDF 2.0)

127 UTF-8 bytes (Unicode)

PDF 1.7ext8 (Acrobat X/XI/DC) and
PDF 2.0 = ISO 32000-2,
pCOS algorithm 11

AES-256 with improved password handling 127 UTF-8 bytes (Unicode)

5.1 Password Security in PDF 63

avoid ambiguities which may otherwise arise if right-to-left and left-to-right characters
are mixed in a password.

The strength of PDF encryption is not only determined by the length of the encryp-
tion key, but also by the length and quality of the password. It is widely known that
names, plain words, etc. should not be used as passwords since these can easily be
guessed or systematically tried using a so-called dictionary attack. Surveys have shown
that a significant number of passwords are chosen to be the spouse’s or pet’s name, the
user’s birthday, the children’s nickname etc., and can therefore easily be guessed.

Permission restrictions. PDF can encode various restrictions on document operations
which can be granted or denied individually (see Figure 5.1):

> Printing Allowed: If printing is not allowed, the print button in Acrobat will be dis-
abled. Acrobat supports a distinction between Low Resolution (150 dpi) and High Reso-
lution printing. Low-resolution printing generates a raster image of the page which
is suitable only for personal use, but prevents high-quality reproduction and re-dis-
tilling. Note that image-based printing not only results in low output quality, but
also considerably slows down the printing process.

> Changes Allowed: the corresponding list provides control over various document
modification operations:

Inserting, deleting, and rotating pages

Filling in form fields and signing existing signature fields

Commenting, filling in form fields, and signing existing signature fields

Any except extracting pages

> Content copying is controlled via Enable copying of text, images, and other content.
While this can be enabled for accessibility with Enable text access for screen reader
devices for the visually impaired, this setting is considered as deprecated in PDF 2.0
since a PDF reader should always support accessibility.

Specifying access restrictions for a document, such as Printing Allowed: None disables the
respective function in Acrobat. However, this not necessarily holds true for third-party
PDF viewers or other software. It is up to the developer of PDF tools whether or not ac-
cess permissions are honored. Indeed, several PDF tools are known to ignore permission
settings altogether; commercially available PDF cracking tools can be used to disable all
access restrictions. This has nothing to do with cracking the encryption; there is simply
no way that a PDF file can make sure it won’t be printed while it still remains viewable.
This is described as follows in ISO 32000-1:

»Once the document has been opened and decrypted successfully, a conforming reader
technically has access to the entire contents of the document. There is nothing inherent in PDF
encryption that enforces the document permissions specified in the encryption dictionary.«

Encrypted document components. By default, PDF encryption always covers all com-
ponents of a document. However, there are use cases where it is desirable to encrypt
only some components of the document, but not others:

> PDF 1.5 (Acrobat 6) introduced a feature called plaintext metadata. With this feature
encrypted documents can contain unencrypted document XMP metadata. This is for
the benefit of search engines which can retrieve document metadata even from en-
crypted documents.

64 Chapter 5: Password Security

> Since PDF 1.6 (Acrobat 7) file attachments can be encrypted even in otherwise unpro-
tected documents. This way an unprotected document can be used as a container for
confidential attachments.

Security recommendations. The following should be avoided because the resulting en-
cryption is weak and could be cracked:

> Passwords consisting of 1-6 characters should be avoided since they are susceptible
to attacks which try all possible passwords (brute-force attack against the password).

> Passwords should not resemble a plain text word since the password would be sus-
ceptible to attacks which try all plaintext words (dictionary attack). Passwords
should contain non-alphabetic characters. Don’t use your spouse’s or pet’s name,
birthday, or other items which are easy to determine.

> The weak RC4 algorithm and AES-256 according to PDF 1.7ext3 (Acrobat 9) should be
avoided because it contains a weakness in the password checking algorithm which
facilitates brute-force attacks against the password. For this reason Acrobat XI/DC
and PLOP never use Acrobat 9 encryption for protecting new documents (only for
decrypting existing documents).

In summary, AES-256 according to PDF 1.7ext8/PDF 2.0 should be used. Passwords
should be longer than 6 characters and should contain non-alphabetic characters.

Protecting PDFs on the Web. When PDFs are served over the Web users can always
produce a local copy of the document with their browser. There is no way for a PDF doc-
ument to prevent users from saving a local copy.

5.2 Password-protecting PDF Documents with PLOP 65

5.2 Password-protecting PDF Documents with PLOP
PLOP applies or removes standard security features to or from PDF files. PLOP can apply
user and master passwords, and set access permissions to prevent printing the docu-
ment with Acrobat, extracting text, modifying the document, etc. In order to decrypt a
document the appropriate master password is required.

Encryption algorithm and key length for password security. PLOP always applies AES-
128 (pCOS algorithm 4) or the secure variant of AES-256 (pCOS algorithm 11). PLOP never
applies weak RC4 encryption or the weak variant of AES-256 according to PDF 1.7ext3/
Acrobat 9 (pCOS algorithm 9) which contains a weakness in the password handling al-
gorithm. The encryption algorithm can be selected with the encryption option of
create_document():

> If encryption=algo4: the PDF version is increased to PDF 1.6 if required and AES-128 en-
cryption according to Acrobat 7/8 (pCOS algorithm 4) is applied. Passwords may con-
tain only Latin-1 characters and are truncated to 32 characters.

> If encryption=algo11 (this is the default): the PDF version is increased to PDF 1.7ext8 if
required and AES-256 encryption according to Acrobat X/XI/DC (pCOS algorithm 11)
is applied. Passwords may contain Unicode characters and are truncated to 127 UTF-8
bytes.

Required passwords for various PLOP operations. In order to strictly obey the author’s
intentions as reflected by a PDF document’s permission settings, not all operations on
documents protected with password security may be allowed. PLOP acts according to
the following rules:

> Querying the encryption status with the pCOS pseudo object encrypt/algorithm etc. is
always possible, regardless of any password.

> Querying document properties with the pCOS interface is governed by the pCOS
mode. For example, XMP document metadata, document info fields, bookmarks, and
annotation contents can be retrieved without the master password if the document
does not require a user password (or only the user password has been supplied). The
pCOS Path Reference discusses this in more detail.

> The following operations require the master password: changing or removing the
user password, master password, or permission settings, Linearizing, optimizing, re-
pairing, or signing an encrypted document.

Table 5.2 summarizes the requirements for all operations.

Table 5.2 Required passwords for various operations on encrypted documents

known
passwords

query encryption status
(pCOS pseudo object
»encrypt«)

query document info, XMP metadata,
bookmarks, annotation contents with
pCOS

change passwords or permissions,
linearize, optimize, repair, or sign

none yes only if no user password is set no

user yes yes no

master yes yes yes

66 Chapter 5: Password Security

Setting passwords with PLOP. In the PLOP library API and the PLOP command-line op-
tions we refer to the original PDF document as the input document, and the encrypted
or decrypted result as the output document (although both may end up with the same
file name). If the input document is protected, PLOP requires either the user or master
password depending on the desired operation according to Table 5.2. If the input docu-
ment could successfully be opened (either because it was unprotected or because the
appropriate password has been supplied) any combination of user password, master
password, and permission settings can be applied to the output document. However,
PLOP interacts with the client-supplied passwords for the output document in the fol-
lowing ways:

> If a user password or permission settings, but no master password has been sup-
plied, a regular user would easily be able to change the security settings, thereby de-
feating any protection. For this reason PLOP considers this situation as an error.

> If the user and master password are the same, a distinction between user and owner
of the file would no longer be possible, again defeating effective protection. PLOP
considers this situation as an error.

> Unicode passwords are allowed for AES-256. Older encryption algorithms require
passwords which are restricted to the Latin-1 character set. An exception will be
thrown for older encryption algorithms if the supplied password contains characters
outside the Latin-1 character set.

> Passwords are truncated to 127 UTF-8 bytes for AES-256, and to 32 characters for older
encryption algorithms.

Setting permissions with PLOP. PLOP can be used to query, set or remove any of the
permission settings detailed in Table 5.3. Unless specified otherwise, all actions are al-
lowed by default. Specifying access restrictions disables the respective feature in Acro-
bat. Access restrictions can be applied without setting a user password, but a master
password is required. Table 5.3 lists the supported permission restriction keywords.

Table 5.3 Permission restriction keywords for the permissions option of create_document() and add_recipient()

keyword explanation

Printing the document

nohiresprint Prevent high-resolution printing. If noprint hasn’t been specified, printing is restricted to the
»print as image« feature which prints a low-resolution rendition of the page.

noprint Prevent printing the file.

Changing the document

nomodify Prevent adding form fields or making any other changes.

noannots Prevent adding or changing comments and filling in form fields. If nomodify and noannots hav-
en’t been specified, creating and modifying form fields (including signature fields) is allowed.

noforms (Implies noannots) Prevent form field filling and signing, even if noannots hasn’t been specified.

noassemble (Implies nomodify) Prevent inserting, deleting, or rotating pages and creating bookmarks and
thumbnails, even if nomodify hasn’t been specified.

Copy contents from the document

nocopy Prevent copying and extracting text or graphics.

noaccessible (Deprecated in PDF 2.0) Prevent extracting text or graphics for accessibility purposes.

5.2 Password-protecting PDF Documents with PLOP 67

Note that Acrobat doesn’t provide full control over all four permission restrictions re-
lated to changing the document, but groups some of the restrictions together. Table 5.4
contains a comparison of Acrobat settings (the values of the »Changes allowed« list in
Figure 5.1) and corresponding PLOP permission restriction keywords.

other

plainmetadata (Only for create_document()) Keep document metadata unencrypted even for encrypted docu-
ments.

nomaster (Only for add_recipient()) Restrict printing, editing, and content extraction according to the
specified permission restriction keywords, and prevent changing the document’s security settings.
If this keyword is not supplied, the recipient has full rights to the document, i.e. all other
permission restriction keywords (except plainmetadata) are ignored.

Table 5.4 Permission descriptions in Acrobat and corresponding keyword combinations for the permissions option of
create_document() and add_recipient()

»Changes allowed« in Acrobat corresponding permissions keywords

None nomodify noannots noforms noassemble

Inserting, deleting, and rotating pages nomodify noannots noforms

Filling in form fields and signing existing signature fields nomodify noannots noassemble

Commenting, filling in form fields, and signing existing signature fields nomodify noassemble

Any except extracting pages noassemble

Table 5.3 Permission restriction keywords for the permissions option of create_document() and add_recipient()

keyword explanation

68 Chapter 5: Password Security

5.3 Applying Password Security on the Command-
Line
You can encrypt documents by specifying the userpassword or masterpassword option (or
both) for create_document(). Note that a user password always requires a master pass-
word, but not vice versa. Full sample code for securing PDF documents and removing
security with the PLOP library can be seen in the encrypt and decrypt programming sam-
ples, which are included in all PLOP packages. The equivalent options for the PLOP com-
mand-line tool are --user and --master.

Permission restrictions can be specified with the permissions option for create_
document(); the equivalent option for the command-line tool is --permissions.

Note On Windows passwords on the command line may contain Unicode characters outside the
Latin-1 character set.

Encryption examples. The sample command-line calls below are shown with long
command-line options; see Section 3.1, »PLOP and PLOP DS Command-line Options«,
page 39, for abbreviated options.

Encrypt a file with user password demo and master password DEMO:

plop --user demo --master DEMO --outfile encrypted.pdf input.pdf

Encrypt all files in the current directory with the same user password demo and master
password DEMO, and place the resulting files in the target directory output:

plop --targetdir output --user demo --master DEMO *.pdf

Passwords which contain space characters must be enclosed in braces (to follow option
list syntax) and with straight quote characters (to follow shell syntax) as in the follow-
ing example: encrypt a document with the master password two words:

plop --master "{two words}" --outfile encrypted.pdf input.pdf

Encrypt and sign a document (see Section 7.2.2, »Signing with the built-in Engine«, page
94, regarding the signature options):

plop --user demo --master DEMO --outfile signed+encrypted.pdf
--signopt "update=false digitalid={filename=demo_signer_rsa_2048.p12}
password=demo" input.pdf

Permission settings. Apply the master password DEMO and the permission settings
noprint, nocopy, and noannots to all files in a directory, and copy the resulting files to the
target directory output. AES encryption is applied regardless of the encryption used in
the input documents. Verbosity level 2 prints the names of all input and output files as
they are processed:

plop --verbose 2 --master DEMO
--permissions "noprint nocopy noannots" --targetdir output *.pdf

5.3 Applying Password Security on the Command-Line 69

Remove all permission restrictions from a file, and copy the result to a different output
file with the same master password. This requires the master password for the input
document:

plop --password DEMO --master DEMO --outfile unrestricted.pdf protected.pdf

Re-encrypt a document (e.g. to replace weak encryption with strong AES encryption or
weak passwords with better ones), and clone the permission settings of the input docu-
ment. Copy the result to a different output file. This requires the master password for
the input document:

plop --password DEMO --master LONGPASSWORD --permissions keep
--outfile unrestricted.pdf protected.pdf

Decryption examples. Decrypt a single file with the master password DEMO. All access
restrictions which may have been applied to the input document will be removed (since
the output is unencrypted):

plop --password DEMO --outfile decrypted.pdf encrypted.pdf

Re-encrypt with stronger crypto. PLOP can be used to apply stronger encryption to
documents which are encrypted with short keys or weak passwords. You must supply
the old and the new password. PLOP uses strong AES encryption by default. The follow-
ing example assumes that the input is encrypted with the master password old, and the
output will be AES-encrypted with the master password DEMO. The new password can
even be the same as the old password. Of course you should only use really strong pass-
words (see »Security recommendations«, page 64), not short ones as in this example:

plop --password old --master DEMO --outfile strong.pdf weak.pdf

6.1 Certificate Security in Acrobat 71

6 Certificate Security
6.1 Certificate Security in Acrobat

Advantages of certificate security. PDF documents which are protected with password
security can be opened if the user or master password is known. The disadvantage is
that password distribution may be difficult since it requires a confidential channel. Al-
so, legitimate document recipients could accidentally or deliberately share passwords
with other parties.

Certificate security offers an alternative to password security. It is based on public
key cryptography and certificates. A document is encrypted for a number of recipients,
where each recipient is identified by his certificate. Since certificates contain only the
public key, but no confidential information, they don’t require any protection and can
freely be distributed. In order to open a protected document a recipient needs the digi-
tal ID with the private key corresponding to the certificate which has been used for en-
cryption.

Certificate security offers the following advantages over password security:
> No passwords must be distributed to the recipients.
> Individual permission restrictions can be specified for each recipient or group of re-

cipients. Permissions are useful for distributing documents to users with different
usage rights.

Fig. 6.1
Viewing certificate security set-
tings and permissions in Acrobat

72 Chapter 6: Certificate Security

> Recipients cannot pass on document passwords to unauthorized third parties. While
they could copy and pass on their digital software ID, the ID reveals their name and
could further be abused, e.g. for forging their signatures. Also, hardware-based digi-
tal IDs cannot be copied.

Certificate Security is supported in Acrobat and Adobe Reader 6 and above. In the sec-
tions below we provide an overview of certificate security in Acrobat. Please refer to the
Acrobat documentation for more details.

Preparations for certificate security. In order to work with certificate security you
need digital certificates. More precisely, you need a digital ID (with a public/private key
pair) for yourself and certificates (containing only a public key) for each recipient. There
are two main options for obtaining certificates:

> Self-signed, e.g. created with Acrobat: if you receive certificates directly from the re-
cipients this method is simple and available at no additional cost. However, when a
digital ID is lost it cannot be recovered, which means encrypted documents can no
longer be opened.

> Digital IDs from a commercial CA are available for a fee, but they can be recovered in
case of loss. If AATL certificates are used they can also be used for digitally signing
documents such that validation in Acrobat doesn’t require any extra configuration
(see Section 7.1.3, »Trusted Root Certificates in Acrobat«, page 90).

For creating protected documents you need only the recipients’ certificates with the
public key. This differs from the requirements for opening protected documents where
each recipient including yourself needs the corresponding digital ID with the private
key. Since certificates don’t contain any confidential information they don’t require a
password and can freely be distributed, while digital IDs are usually protected with a
password or PIN.

Configuring your own digital ID for decryption. Acrobat supports several methods for
configuring a digital ID so that it can be used for opening a protected document. Pro-
ceed as follows to create or install your own digital ID with Acrobat XI/DC: Edit,
Preferences..., Signatures, Identities & Trusted Certificates, More..., Digital IDs, Add ID.
In the resulting dialog Add Digital ID you can either add an existing ID from file or create
a new self-signed ID.

In order to export a trusted certificate or to create a certificate for your own digital ID
(so that others can encrypt documents for you) proceed as follows with Acrobat XI/DC:
Edit, Preferences..., Signatures, Identities & Trusted Certificates, More..., Trusted Certificates (for
other people’s certificate) or Digital IDs (for your own certificate), select the ID or certifi-
cate, Certificate Details.
This brings up the Certificate Viewer where you click Export... and Save the exported data
to a file: Certificate File (not Certificate Message Syntax - PKCS#7). The exported certificate
can be used as a recipient certificate (provided it is not yet expired).

Note Acrobat can also use digital IDs in the Windows certificate store.

6.1 Certificate Security in Acrobat 73

Applying certificate security with Acrobat. Once you configured your own digital ID
and obtained recipient certificates you can encrypt a PDF document with the following
steps in Acrobat XI/DC:

> Click File, Properties..., Security tab, Security Method: Certificate Security. In Acrobat DC
you can use the following alternative sequence: Tools, Protect, Encrypt, Encrypt with
Certificate. In the resulting dialog you can specify the type of PDF encryption which is
used for certificate security (see Figure 6.2).

> In the next dialog you should select your own digital ID to ensure that you will be
able to open the encrypted document later.

> Now select an arbitrary number of recipient certificates and adjust permissions if de-
sired. The recipient certificates can be pulled from the Windows certificate store,
read from a file, or fetched from an online repository.

> Saving the file encrypts it according to the selected security settings.

In order to open the encrypted document again you need a digital ID with the private
key which corresponds to one of the recipient certificates. The ID can be installed in
Acrobat’s certificate store or in the Windows certificate store.

Fig. 6.2
Acrobat’s certificate security dialog with choice of PDF encryption algorithms at the bottom

74 Chapter 6: Certificate Security

Decryption errors. If Acrobat cannot decrypt a document it issues the following error
message:

A digital ID was used to encrypt this document but no digital ID is present to decrypt it.
Make sure your digital ID is properly installed or contact the document author.
However, this message appears not only if the corresponding digital ID is missing, but
also if the document cannot be decrypted for other reasons.

Acrobat incompatibility with ECC recipient certificates. Acrobat XI and above support
Elliptic Curve Cryptography (ECC) with curves P-256/P-384/P-521 and the other curves
recommended by NIST for digital signatures and encryption. However, Acrobat creates
a CMS encryption object which doesn’t conform to RFC 5652 as amended by RFC 5753
»Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)«.
This makes encrypted documents incompatible with third-party software.

This problem has been fixed in Acrobat DC 17.012.20093 Continuous track and Acro-
bat DC Classic 15.6.30352 (August 2017 updates). We recommend to avoid certificate se-
curity with ECC recipient certificates in older Acrobat versions.

6.2 Certificate Security in PDF 75

6.2 Certificate Security in PDF

6.2.1 CMS Enveloped Data
PDF certificate security is based on the Cryptographic Message Syntax (CMS) according to
RFC 5652. CMS describes an encapsulation syntax for various cryptographic features in-
cluding digital signatures, message authentication and encryption. PDF certificate secu-
rity makes use of the Enveloped Data functionality provided by CMS; encrypted e-mail
works in a similar manner. To optimize storage requirements and performance certifi-
cate security is implemented in a hybrid manner: first an encryption key is created ran-
domly and encrypted against each recipient’s certificate. This process then uses public
key encryption based on the RSA or Elliptic Curve Cryptography (ECC) algorithms and
stores the encrypted versions of the random key in the CMS object. The random key is
used to encrypt the actual CMS payload with a symmetric algorithm and store it in the
CMS. Modern implementations generally use the AES algorithm for symmetric encryp-
tion. See Section 6.2.2, »Cryptographic Details«, page 77, for more details on this process
and the involved algorithms.

Each recipient uses his private key to decrypt the symmetric key, and then uses the
resulting key to decrypt the CMS payload. The combination of encrypted payload and
an encrypted content encryption key for each recipient is called a digital envelope.

Since the first encryption step is asymmetric and the random key is kept only tem-
porarily, the creator of an encrypted document cannot decrypt it later unless his own
certificate is included in the list of recipients.

There are two reasons for the hybrid approach with asymmetric and symmetric en-
cryption. Firstly, asymmetric encryption is very slow and suited only for small amounts
of data. It is therefore applied only to the short symmetric encryption key and not the
full payload. Secondly, this approach allows the payload to be encrypted only once with
symmetric encryption, while only the short encryption key must be encrypted individ-
ually for each recipient. Encrypting the payload for each recipient would significantly
increase the output file size.

The EnvelopedData structure in a CMS object contains one or more RecipientInfo struc-
tures (see Figure 6.4). Each of these contains information about a recipient’s certificate –
usually the certificate issuer (CA) and serial number – and an encrypted key for the re-
cipient.

Recipient confidentiality. The recipient names are not present in the CMS object. How-
ever, the name of the certificate issuer as well as the certificate’s serial number can be
retrieved from the CMS object without decryption. For certificates retrieved from a Pub-
lic Key Infrastructure this means that only the name of the CA and the serial number
are exposed. Depending on the PKI this information may or may not be sufficient for
identifying the recipient. However, for self-signed certificates the certificate holder her-
self signs the public key. As a result, the names of all recipients with self-signed certifi-
cates are visible in plaintext in the CMS object. In some situations exposing recipient in-
formation may be undesirable. You can solve this problem by avoiding self-signed
certificates, or by using pseudonyms in self-signed certificates.

Number of recipients and CMS size. A document can be encrypted against an arbitrary
number of recipient certificates. However, since a uniquely encrypted key is embedded
for each additional recipient, the size of the CMS increases with the number of recipi-

76 Chapter 6: Certificate Security

ents. The file size expansion depends on the length of the recipient’s public key and the
amount of information in the certificate. Typically, the output file size increases by ca.
1-2 KB per recipient.

Applying CMS to PDF Documents. A PDF document encrypted with certificate security
contains one or more CMS object in the Recipients entry of the Encrypt dictionary. How-
ever, PDF doesn’t apply the CMS mechanism directly to the document contents, but
adds another layer of encryption which is identical to password security. The CMS pay-
load doesn’t contain any PDF objects, but keying material which is used to derive the en-
cryption key for PDF objects. The symmetric algorithms used for encrypting PDF objects
are the same which are used for password security (see Table 5.1). While certificate secu-
rity derives the document encryption key from the encrypted keying material in the
CMS, password security derives this key from the secret password.

PDF permission restrictions. The same permission restrictions as for password securi-
ty can be applied to documents protected with certificate security (see Figure 6.1 and
»Permission restrictions«, page 63). In addition to the permission restrictions for pass-
word security the following setting is possible with certificate security:

> Restrict printing and editing of the document and its security settings (see top of Figure
6.3): If this restriction is active, the recipient can open and read the document, but
certain operations such as printing and modifying the document are governed by
other permission restrictions. If this restriction is not active, the recipient has full
control over the document and can also change the security settings. This is similar
to documents protected with password security where the user knows the master
password. For this reason we call this master permission.

Different users may be assigned different permission restrictions. For example, in an
enterprise context a manager may be assigned master permission so that she can edit
the document, change the encryption or apply any other change, while her coworkers
are only allowed to fill form fields and sign the document. The ability to apply specific
permissions to each recipient or group of recipients is an important advantage of certif-
icate security over password security.

The permissions are included in the CMS payload which is encrypted for a particular
recipient. For this reason permission restrictions for a specific recipient can only be de-
termined upon decryption for this recipient. It is not possible to query a recipient’s per-
missions without access to the corresponding digital ID.

Permission handling is a noteworthy difference between certificate security for PDF
documents and e-mail. A PDF document can contain multiple CMS objects, where each

Fig. 6.3
Setting permission restrictions

for certificate security in Acrobat

6.2 Certificate Security in PDF 77

object may in turn address a group of several recipients. Encrypted keys for recipients
with the same permissions are stored in the same CMS object.

6.2.2 Cryptographic Details
Certificate security involves multiple encryption steps which may use different algo-
rithms and key lengths. The encryption steps described below are noted in Figure 6.4.

Step 1: CMS public key encryption and key wrap. Public key encryption is deployed to
encrypt a randomly generated content encryption key (CEK), where the details vary be-
tween RSA and ECC recipient certificates. Different recipients may use a mixture of RSA
and ECC keys as well as different RSA key lengths or ECC curves.

If the recipient’s certificate contains a public key for the RSA algorithm (RFC 5652),
this key is used to encrypt the content encryption key. The supported RSA key lengths
are not specified in the PDF Reference, but depend on the Acrobat version. RSA encryp-
tion requires a padding method. The default PKCS#1 v1.5 method is supported in all
Acrobat versions. The newer OAEP (Optimal asymmetric encryption padding) according
to PKCS#1 v2 (identical with RFC 3447) and RFC 3560 offers security advantages; it can be
requested with the option rsapadding=oaep. OAEP is not supported in Acrobat DC and
below, but in some third-party PDF viewers.

If the recipient’s certificate contains a public ECC key (RFC 5753), the Elliptic Curve
Diffie-Hellman (ECDH) key agreement scheme and the public key in the recipient certif-

CMS object (EnvelopedData)

RecipientInfo 1:
content encryption key (CEK)
(encrypted with John Doe’s public key)

RecipientInfo 2:
content encryption key (CEK)
(encrypted with Jane Blogg’s public key)

CMS payload (data):
seed for PDF encryption key + permissions
(encrypted with CEK)

RecipientInfo 3:
...

PDF encryption
key

PDF
document
encryption

Jane Blogg’s private key
(protected with

password or PIN)

content encryption
key (CEK)

Fig. 6.4
The CMS EnvelopedData
structure contains encrypted
keys for all recipients with the
same permissions. A PDF doc-
ument contains one or more
CMS objects (one for each set
of permissions).

78 Chapter 6: Certificate Security

icate are used to derive yet another temporary key encryption key. A symmetric encryp-
tion algorithm called key wrap algorithm is then used to encrypt (wrap) the content en-
cryption key with the key encryption key. Acrobat XI/DC uses AES-128 or AES-256 as key
wrap algorithm. The supported ECC curves are not specified in the PDF Reference, but
depend on the Acrobat version.

Step 2: CMS content encryption. The content encryption key is used to encrypt the
PDF encryption keying material (not the actual key itself) with a symmetric algorithm,
resulting in the encrypted CMS payload. With PDF certificate security the CMS »con-
tent« doesn’t contain any PDF document data, but instead some keying material from
which the final encryption key for PDF objects is derived.

The CMS content encryption algorithm can be selected from a number of algo-
rithms. Acrobat 7-X always use Triple-DES, while Acrobat XI/DC use AES-128. Since pay-
load encryption is required only once regardless of the number of recipients, the choice
of algorithm doesn’t depend on the recipient certificates.

Step 3: PDF encryption. The PDF encryption key is applied to PDF objects which results
in the data for displaying the document. This step is identical to password security.

The symmetric algorithm and key length for encrypting PDF objects are specified in
the PDF reference and correspond to a subset of those used for password security (see
Table 5.1). The same symmetric algorithm is used to encrypt all objects in the PDF docu-
ment. Only the algorithm for step 3 can be selected in Acrobat (see Figure 6.2, bottom).
For the strong encryption introduced with Acrobat 7 and Acrobat 9 the PDF encryption
algorithm is AES-128 or AES-256, respectively.

Algorithms and key lengths. Table 6.1 summarizes algorithms and key lengths for var-
ious PDF and Acrobat versions.

Table 6.1 PDF and CMS encryption algorithms for certificate security and support in Acrobat

PDF/Acrobat version and
pCOS algorithm number

Step 1: CMS
public key algorithm

Step 2:
CMS content encryption

Step 3:
PDF encryption

PDF 1.4 (Acrobat 5),
pCOS algorithm 5

Acrobat 6 and above:
2048-bit RSA

Acrobat 6-X: Triple-DES
Acrobat XI/DC: 128-bit AES
PLOP: only reading supported

128-bit RC4 (weak;
deprecated in PDF
2.0))

PDF 1.6 (Acrobat 7),
pCOS algorithm 6

Acrobat 7 and above:
up to 4096-bit RSA
Acrobat 8 and above:
up to 8192-bit RSA1

1. RSA-8192 keys require Acrobat X or above and are not supported by Acrobat on macOS.

Acrobat 7-X: Triple-DES
Acrobat XI/DC: 128-bit AES
PLOP: 128-bit AES

128-bit AES (depre-
cated in PDF 2.0))

PDF 1.7ext3 (Acrobat 9),
pCOS algorithm 10

Acrobat 9 and above:
up to 8192-bit RSA2,3

Acrobat DC: ECC with curve
P-256/P-384/P-5214,5

2. When decrypting documents with an ID in the Windows certificate store, Acrobat supports only keys where the length is a multiple
of 8 bits.
3. RSA with OAEP padding is not supported in Acrobat DC and below.
4. Acrobat DC 2017.012.20093 Continuous track or above required, see »Acrobat incompatibility with ECC recipient certificates«, page
74.
5. The key derivation function dhSinglePass-stdDH-sha512kdf (is optional in RFC 5753) is not supported in MSCAPI. Therefore such
documents cannot be decrypted by PLOP with engine=mscapi, but only with engine=builtin.

Acrobat XI/DC: 256-bit AES
PLOP: 256-bit AES

256-bit AES (strong)

6.3 Use Cases for Certificate Security 79

6.3 Use Cases for Certificate Security
In this section we discuss use cases which benefit from the advantages of certificate se-
curity. In most cases the following questions should be analyzed:

> Is it required to include the author’s own certificate in the list of recipients? If it is
not included the author won’t be able to open the protected document.

> Which permission restrictions are applicable to each recipient or group of recipi-
ents?

Distribute confidential documents to a closed group of recipients. Members of a
group want to exchange confidential documents so that all other group members can
use the documents. The PDFs are encrypted against the certificates of all group mem-
bers. If the creator of a document includes his own certificate when encrypting the file,
only a single version of the document is required. Although the number of recipients is
not strictly limited, it should be kept in mind that each recipient slightly enlarges the
document.

In a variation of this use case some recipients (the managers) are allowed to modify
the document, while regular employees are only allowed fill form fields and sign the
PDF. This distinction can be achieved with separate recipient groups where each group
is assigned appropriate permissions.

If the number of group members gets large (thousands of recipients), the group can
be split into smaller sets. A small number of recipients in each subset minimizes the file
size, while a large number of recipients in each subset reduces the number of different
protected versions which must be created based on the same document.

Serially signing a confidential document. A confidential document is encrypted for a
number of recipients. The recipients are expected to digitally sign the document, but
are not allowed to apply any modification. To achieve this, the permissions are set to al-
low only signing, but no modifications. Recipients can use the same digital ID for de-
crypting and signing the document, provided it has been issued to allow both activities.

Digital rights management. Documents with commercial contents are distributed to
paying customers. Each subscriber or buyer receives a protected PDF which has been en-
crypted against his personal certificate. In order to create an individual document ver-
sion for each recipient, many protected versions of the same document can be created.
The nomaster permission restriction is set to prevent customers from tampering with
the document.

Secure storage and archiving. In this scenario an archive receives documents which
must be protected. Each archived document is encrypted against the archive owner’s
certificate. Only a single protected version must be created for each archived document.

Invoice and statement distribution. A customer-specific invoice, statement or transac-
tion document is encrypted against the customer’s certificate to ensure confidentiality.
A single protected version of each document is created and provided to the customer.
The nomaster permission restriction is set to prevent customers from tampering with
the document.

80 Chapter 6: Certificate Security

6.4 Certificate Security with PLOP
PDF encryption algorithm and key length. PLOP always applies certificate encryption
in combination with the strong algorithms AES-128 or AES-256, but never the weak RC4
algorithm. The PDF encryption algorithm can be selected with the encryption option of
create_document():

> For encryption=algo6: the PDF version is increased to PDF 1.6 if required and certifi-
cate encryption with AES-128 according to Acrobat 7 (pCOS algorithm 6) is applied.

> For encryption=algo10 (which is the default): the PDF version is increased to PDF
1.7ext3 if required and certificate encryption with AES-256 according to Acrobat 9
(pCOS algorithm 10) is used.

The PDF encryption algorithm (i.e. AES-128 or AES-256) is also used for CMS content en-
cryption; no weak algorithms are deployed.

Specifying recipient certificates. For each recipient a certificate must be supplied
which contains the recipient’s public key. Unlike a digital ID a certificate does not con-
tain any private key and therefore doesn’t have to be protected. The PDF document is
encrypted such that only the specified recipients are able to decrypt it with the private
key corresponding to the public key in their certificate.

Each recipient must be specified with a call to add_recipient() before an output docu-
ment can be created (full sample code is available in the certsec mini sample which is in-
cluded in all PLOP packages):

if (plop.add_recipient("certificate={filename=demo_recipient_1.pem}") == -1)
{

/* emit warning and continue */
System.err.print("Warning: ", plop.get_errmsg());

}
...
if (plop.create_document(out_filename, optlist) == -1) {

System.err.println("Error: " + plop.get_errmsg());
plop.delete();
System.exit(2);

}

Specifying at least one recipient activates certificate security. Once a list of recipients
has been created, it will be applied to all subsequently generated documents until a new
list is created with additional calls to add_recipient().

Recipients can be specified in the PLOP command-line tool with the --recipient op-
tion.

Requirements for recipient certificates. A recipient certificate used for protecting PDF
documents with PLOP must meet the following requirements:

> If the certificate contains a key usage extension it must enable the certificate for en-
cryption or key agreement. Certificates which are only enabled for digital signatures
cannot be used for encryption.

> The certificate must be valid, i.e. its expiration date must not have been reached.
> By default RSA keys are only accepted if the key length is a multiple of 8 bits. Odd-

sized keys are accepted with the option conformance=extended. However, Acrobat
cannot open the resulting documents with a digital ID in the Windows certificate

6.4 Certificate Security with PLOP 81

store, but only with an ID in the Acrobat certificate store. It is recommended to use
keys where the length is a multiple of 64 bits.

> ECC recipient certificates with curves other than P-256/P-384/P-521 are rejected by de-
fault, but are accepted with the option conformance=extended. However, the encrypt-
ed documents cannot be opened with Acrobat XI/DC.

Permission restrictions. Permission restrictions, e.g. printing not allowed, can be spec-
ified separately for each recipient in the permissions option of add_recipient(). Unless
specified otherwise, all actions are allowed by default. Table 5.3 lists the supported per-
mission restriction keywords.

Note that Acrobat doesn’t provide independent control over all four permission re-
strictions related to changing the document, but groups some of the restrictions togeth-
er. Table 5.4 relates Acrobat settings (the values of the »Changes allowed« list in Figure
6.3) to the corresponding combinations of PLOP permission restriction keywords.

Sample option list for add_recipient() to prohibit all document modifications except
form filling and signing:

certificate={filename=demo_recipient_1.pem} permissions={nomodify noannots noassemble}

Cryptographic engines. The builtin and mscapi engines discussed in Section 7.2, »Sign-
ing with PLOP DS«, page 93, can also be used for retrieving recipient certificates for en-
cryption.

The engine can be specified with the engine option of add_recipient() and determines
suboptions for certificate selection:

> With engine=builtin (the default) certificates must be supplied as X.509 files in PEM or
DER encoding, e.g.

engine=builtin certificate={filename=demo_recipient_1.pem}

The specified certificate file must contain exactly one encryption certificate.
> With engine=mscapi certificates can be fetched from the Windows certificate store.

They are selected by the name of the certificate store and the recipient’s subject
name in the certificate, e.g.

engine=mscapi certificate={store=My subject={PLOP Demo Recipient 1}}

Decrypting protected documents. In order to decrypt a document which is protected
with certificate security you need a digital ID corresponding to one of the recipient cer-
tificates in the document. The digitalid option of open_document() must be supplied
along with the corresponding password for accessing the ID, e.g.

digitalid={filename=demo_recipient_1.p12} password=demo

If the digital ID is fetched from the Windows certificate store, all IDs in the specified
store are checked to decrypt the document. For this reason the subject suboption for se-
lecting an ID is not required:

engine=mscapi digitalid={store=My}

Since My is the default store name this can be further abbreviated as follows:

engine=mscapi

82 Chapter 6: Certificate Security

Required credentials for various PLOP operations. In order to strictly obey the author’s
intentions as reflected by a PDF document’s permission settings, not all operations on
documents protected with certificate security may be allowed. PLOP processes docu-
ments which are protected with certificate security according to the following rules:

> Querying the encryption status with the pCOS pseudo object encrypt/algorithm etc. is
always possible, regardless of the availability of a suitable digital ID.

> Querying other document properties with the pCOS interface requires a suitable dig-
ital ID, i.e. an ID with a private key which matches one of the recipient public keys in
the encrypted document. This can be checked with pcosmode=1 or pcosmodename=
restricted.

> Signing a document in incremental update mode also requires a suitable digital ID.
In addition the noannots permission setting in the document must be set to false to
allow signing. This can be checked with the encrypt/noannots pCOS pseudo object.

> Processing the document in any other way, e.g. removing encryption or changing
the permission settings, requires a suitable digital ID. In addition the document
must set master permission for the ID which is used to open the document. This can
be checked with pcosmode=2 or pcosmodename= full.

Table 6.2 summarizes the requirements for all operations.

Querying recipients and permissions with pCOS. You can use the pCOS pseudo object
encrypt/recipients to check for certificate security. If the value of

length:encrypt/recipients

is larger than zero, each entry in this array contains a CMS object for a group of one or
more recipients with identical permissions. Since each CMS object may contain one or
more recipients the array length does not necessarily indicate the total number of re-
cipients.

The pcosmode and pcosmodename pseudo objects can be used to check whether a suit-
able digital ID was supplied for opening the document, and whether the master permis-
sion is set:

> Minimum pCOS mode (pcosmode=0 or pcosmodename= minimum): no suitable digital
ID was supplied.

> Restricted pCOS mode (pcosmode=1 or pcosmodename= restricted): a suitable digital ID
for opening was supplied, but the document does not set master permission for this

Table 6.2 Required digital IDs for various operations on encrypted documents

available ID, master
permission and pCOS mode

query encryption
status with pCOS

query other document
properties with pCOS

sign in
update mode

other processing,
e.g. change encrypt.

none (pCOS mode 0/mini-
mum)

yes no no no

suitable ID available and
master permission not set
(pCOS mode 1/restricted)

yes yes only if
noannots=false

no

suitable ID available and
master permission set for
this ID (pCOS mode 2/full)

yes yes yes yes

6.4 Certificate Security with PLOP 83

recipient. Signing the document is only allowed if the noannots permission is set to
false.

> Full pCOS mode (pcosmode=2 or pcosmodename= full): a suitable digital ID was sup-
plied and the document sets master permission for this recipient. All document per-
missions are granted without restriction and all PLOP operations are allowed.

Permission restrictions can be checked with the following entries in the encrypt pCOS
pseudo object (e.g. encrypt/noassemble):

noaccessible, noannots, noassemble, nocopy, noforms, nohiresprint, nomodify, noprint

Note that there is no pseudo object encrypt/nomaster since the status of the master per-
mission flag can be checked with pcosmode=2 or pcosmodename= full. Refer to the pCOS
Path Reference for more information. The dumper mini sample contains code for identi-
fying documents with certificate security.

84 Chapter 6: Certificate Security

6.5 Applying Certificate Security on the
Command-Line
The sample command-line calls below are shown with long command-line options; see
Section 3.1, »PLOP and PLOP DS Command-line Options«, page 39, for abbreviated op-
tions.

Encryption. Recipient certificates can be specified in the --recipient command-line op-
tion or its short form -r. This option can be repeated for multiple recipients.

Encrypt a document for a single recipient provided the certificate is available on file:

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--outfile encrypted.pdf input.pdf

Encrypt a document for a recipient and restrict its permissions so that printing and
copying are not allowed:

plop --recipient "certificate={filename=demo_recipient_1.pem permissions={noprint
nocopy}}" --outfile encrypted.pdf input.pdf

Encrypt a document for two recipients, provided the certificates are available on file:

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--recipient "certificate={filename=demo_recipient_2.pem}"
--outfile encrypted.pdf input.pdf

Encrypt a document for a large number of recipients: in this situation response files for
the PLOP command-line tool are useful (see »Response files«, page 41). Create a text file
recipients.txt with all required recipient options:

--recipient "certificate={filename=demo_recipient_1.pem}"
--recipient "certificate={filename=demo_recipient_2.pem}"
--recipient "certificate={filename=demo_recipient_3.pem}"
--recipient "certificate={filename=demo_recipient_4.pem}"
...

Next, supply the name of this response file in the PLOP command-line call, preceded by
an @ character:

plop @recipients.txt --outfile encrypted.pdf input.pdf

Encrypt a document for a single recipient for which a certificate is available in the Win-
dows certificate store:

plop --recipient "engine=mscapi certificate={store=My subject={PLOP Demo Recipient 1}}"
--outfile encrypted.pdf input.pdf

Encrypt and sign a document (see Section 7.2.2, »Signing with the built-in Engine«, page
94, regarding the signature options). This requires the recipient certificate and the sign-
er’s digital ID:

6.5 Applying Certificate Security on the Command-Line 85

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--signopt "update=false digitalid={filename=demo_signer_rsa_2048.p12} password=demo"
--outfile signed+encrypted.pdf input.pdf

Permission settings. Protect a document for two recipients where the first recipient is
granted full access, while the second recipient is only allowed to sign the document
without applying any changes. Since the noforms permission restriction keyword is ab-
sent, form filling and signing are allowed for the second recipient:

plop --recipient "certificate={filename=demo_recipient_1.pem}"
--recipient "certificate={filename=demo_recipient_2.pem}

permissions={nomodify nocopy noannots noassemble}"
--outfile encrypted.pdf input.pdf

Encrypt a document for a single recipient who is only allowed to view the document:

plop --recipient "certificate={filename=demo_recipient_1.pem}
permissions={noprint nomodify nocopy noannots noassemble noforms}"

--outfile encrypted.pdf input.pdf

Decryption. Decrypt a document which has been protected with certificate security
and create an unprotected version, assuming a suitable digital ID is available on file:

plop --inputopt "digitalid={filename=demo_recipient_1.p12} password=demo"
--outfile decrypted.pdf encrypted.pdf

Decrypt a protected document and create an unprotected version, assuming a suitable
digital ID is available in the Windows certificate store My. Since the store option defaults
to My and PLOP automatically locates a suitable ID, the digitalid option can be omitted.
The password option can also be skipped since the private key is protected by the Win-
dows login:

plop --inputopt "engine=mscapi" --outfile decrypted.pdf encrypted.pdf

86 Chapter 6: Certificate Security

7.1 Introduction 87

7 Digital Signatures with PLOP DS
Note The ability to digitally sign PDF documents is only available in PDFlib PLOP DS, but not in the

PLOP base product.

7.1 Introduction
7.1.1 Basic Concepts of Digital Signatures

Explaining the details of digital signatures is beyond the scope of this manual. Howev-
er, we will mention some important components which play a role for digitally signing
PDF documents with PLOP DS. These components collectively form a Public Key Infra-
structure (PKI).

Digital signatures are based on Public Key Cryptography, also called asymmetric en-
cryption. It works with a private key which is only available to the person who signs a
document, and a public key which is available to everyone so that they can validate the
signatures.

Certificates. Public keys are generally distributed in a so-called certificate which con-
tains the signer’s public key and his name and contact details. In order to avoid forged
certificates this information package is again signed by a trusted third party which is-
sues a certificate to a person or other entity, such as an enterprise or a server. Such
trusted third parties are called Certificate Authority (CA) or Trust Center (TC). The CA’s
own certificate is called the root certificate. It is usually published on the CA’s web site
for everyone to download it. Certificates are generally stored in X.509 format.

Since encrypting a document with certificate security requires only the public key,
the recipient’s certificate is sufficient. On the other hand, decrypting such a document
requires the private key which is only available in the recipient’s digital ID (see below).

Certificate chain. A signing certificate issued by a CA is considered trustworthy if the
issuing CA or the higher-up CA which issued the intermediate CA’s certificate is consid-
ered trustworthy. The list of certificates which are linked by signing the respective next
certificate from the root CA down to the end-user certificate which is actually used to
sign a document is referred to as the certificate chain. The top-level CA certificate in the
chain is called the root certificate. In order for a signature to be regarded as valid all cer-
tificates in the chain must be valid.

Digital IDs. It is important to distinguish certificates from a package containing both
the certificate and the corresponding private key, which is called a digital ID. While cer-
tificates can freely be distributed to everyone, digital IDs must be carefully protected
since they contain confidential information (the private key). Accessing the private key
in a digital ID in order to apply a digital signature or to decrypt a document protected
with certificate security usually requires a password or passphrase. A common storage
format for digital IDs is PKCS#12 (also called PFX on Windows). Note that certificates and
digital IDs are not always clearly distinguished: it is common to talk about signing a
document with a certificate when it would be more accurate to call it signing with a digital
ID.

88 Chapter 7: Digital Signatures with PLOP DS

Certificate revocation checking. Certificates are valid for a certain period of time. They
are no longer valid as soon as their expiration date has passed, or if they have explicitly
been revoked by the CA. Revoking a certificate may be necessary because the certificate
holder has left the associated organization or the private key has been compromised.

Certificate checking usually involves an online query using a protocol called OCSP
(Online Certificate Status Protocol) or certificate revocation lists (CRLs). More details
about both methods can be found in »OCSP overview«, page 112, and »CRL overview«,
page 114.

Timestamping. Timestamps apply a digital signatures to the representation of a par-
ticular point in time, where the time may be obtained from a trusted and accurate time
source. Timestamps can be integrated into a regular signature to ensure that the signa-
ture and the signed document existed before a certain point in time. Timestamps can
also be applied separately to PDF documents. See Section 7.5.1, »Timestamp Configura-
tion«, page 118, for more information about timestamping servers and protocol details.

Sources of digital IDs. There are various sources where you can obtain a digital ID.
Many IDs are intended for signing e-mail; these e-mail IDs can also be used in PLOP DS
for signing PDF documents. Your choice of source for a digital ID depends on the num-
ber of required IDs (e.g. one per employee or only one corporate ID) and the desired de-
gree of control:

> Obtain a digital ID from one of the public CAs which issue commercial or free IDs. In
order to facilitate signature validation with Acrobat it is recommended to create sig-
natures with a digital ID from a CA which is installed as trusted root in Acrobat (see
»Trusted Root Certificates in Acrobat«, page 90).

> For large organizations: Build your own private CA so that you can create digital IDs
yourself. There are various software packages available for building a CA. Examples
include the free OpenSSL software (see www.openssl.org), the keytool application
which is part of Java, and the Certificate Services which are part of the Microsoft Win-
dows Server operating system.

> For testing purposes or exchange within a controlled or small user group: Create a
digital ID from a self-signed certificate. You can create self-signed certificates in
Acrobat XI/DC as follows: Edit, Preferences, Signatures, Identities & Trusted Certificates,
More..., Add ID, A new digital ID I want to create now
In the next step you can specify a PKCS#12 disk file or the Windows certificate store
as target. Both methods are supported in PLOP DS.

7.1.2 Signatures in Acrobat and PDF
PDF supports different kinds of digital signatures which are discussed below. Signatures
are implemented as form fields in PDF. PDF signatures always relate to the whole docu-
ment (as opposed to single pages) and are available in two flavors:

> Invisible signatures do not occupy any space on the page. They can be viewed in
Acrobat by bringing up the Signatures pane (Acrobat XI/DC: View, Show/Hide..., Naviga-
tion Panes, Signatures...).

> Visible signatures use a rectangular form field which is located somewhere on a page
in the document. You can specify the page number, field name and field coordinates.

Additional properties can be specified for both types of signatures, e.g. location, reason
for signing, and contact information.

http://www.openssl.org/

7.1 Introduction 89

Note Earlier Acrobat versions displayed valid visible signatures with a green check mark inside the
signature field. However, due to confusion and potential problems with forgery (e.g. users
could supply a »visualization page« which itself showed a green check mark) this is no longer
recommended practice. Status information as well as other signature details for one or more
PDF signatures are displayed in Acrobat's signature pane on the left-hand side, leaving the sig-
nature rectangle on the page unmodified (regardless of the signature's validity). This provides
for a clearer presentation of the signature status to the user.

Approval signatures. The most common signature type used for PDF is called
signature. A PDF document may contain one or more approval signatures. An
approval signature is placed in a form field of type signature which may be visi-
ble or invisible. An approval signature ensures that the document has been signed by
the holder of the digital ID and also makes sure that document changes can be detected.
Any change applied to the document invalidates the signature. Approval signatures are
related to an individual person or entity who creates the signature. Since nobody else
has access to the necessary credentials the signer cannot deny the state of the docu-
ment at signature time (non-repudiation).

When opening a document with an approval signature Acrobat usually displays a
blue document message bar near the top of the window (unless the document conforms
to PDF/A or contains form fields, in which case the PDF/A status or field message has
priority over the signature information). If the signature is valid the message bar con-
tains a green check mark. The signature is also shown in Acrobat’s Signatures pane.

Approval signatures may optionally contain certificate revocation information and
a timestamp for long-term validation. Both items are obtained from a trusted server
over the network when the signature is created.

Approval signatures are the default signature type in PLOP DS. They require at least
PDF 1.6 output. If necessary, PLOP DS increases the PDF version accordingly.

Approval signatures are reported in pCOS as signaturefields[...]/sigtype=approval.

Certification signatures. The first signature in a document may be a certifica-
tion signature. This type is also called author signature because it certifies the
state of the document as the author created it. The document author may allow
certain types of modifications which can be applied to the document without breaking
the signature. Certification signatures are therefore also called Modification Detection
and Prevention (MDP) signatures. The following types of allowed modifications can be
specified (see Table 7.6):

> No changes allowed: useful for typical read-only documents such as press releases,
government publications, etc. In this case even adding an approval or document-lev-
el timestamp signature invalidates the certification signature.

> Form filling and adding digital signatures (by clicking a signature field, but not via
Acrobat’s menu items) allowed: the certification signature ensures form users that
they are working with the authentic document, e.g. a purchase order form. When
they fill in editable form fields or apply an approval signature the certification sig-
nature is not invalidated. Adding pages by spawning page templates is also allowed
(as opposed to manually adding pages), but this technique is rarely used.

> Form filling, adding digital signatures and annotations allowed: this could be used
e.g. by a notary who wishes to add a comment to a signed document where the com-
ment contains details about the nature of the attestation.

90 Chapter 7: Digital Signatures with PLOP DS

When opening a document with a certification signature Acrobat displays a badge in
the document message bar near the top of the window. The signature is also shown in
Acrobat’s Signatures pane (again with a badge if it is valid).

Certification signatures can be created with PLOP DS with the certification signature
option (see Section 7.3.6, »Certification Signatures«, page 109). They require at least
PDF 1.6 output. If necessary, PLOP DS increases the PDF version accordingly.

Certification signatures are reported in pCOS as signaturefields[...]/sigtype=certifi-
cation.

Document-level timestamp signatures. Timestamp signatures must not be
confused with an embedded timestamp in an approval or certification signa-
ture. A document may contain any number of timestamp signatures. A time-
stamp signature ensures that the document existed at a particular point in time. The
timestamp is obtained from a trusted server over the network and is not related to an
individual person or entity who signed the document. Timestamp signatures play an
important role for long-term validation since they can be used to refresh existing signa-
tures. Timestamp signatures are placed in a form field, but they are always invisible.

When opening a document with a timestamp signature Acrobat displays a green
check mark in the document message bar near the top. The signature is also shown in
the Signatures pane (with a clock-and-stamp icon if it is valid).

Timestamp signatures can be created with PLOP DS with the doctimestamp signature
option (see Section 7.5.3, »Document-Level Timestamp Signatures«, page 120). They re-
quire at least PDF 1.7ext8 output. If necessary, PLOP DS increases the PDF version accord-
ingly.

Timestamp signatures are reported in pCOS as signaturefields[...]/sigtype=doctime-
stamp.

Usage rights signatures. A document may contain up to two usage rights sig-
natures. They can be used to enable certain editing features in Adobe Reader, re-
sulting in so-called Reader-enabled PDF documents. Usage rights signatures are
not bound to signature form fields and are not shown in Acrobat’s Signatures pane.

Usage rights signatures cannot be created with PLOP DS, but they can queried with
the pCOS pseudo object usagerights.

7.1.3 Trusted Root Certificates in Acrobat
Adobe Reader and Acrobat accept CA certificates from the sources listed below. These
are called trusted roots or trust anchors. You can display Acrobat’s list of trusted root
certificates with Edit, Preferences, Signatures, Identities & Trusted Certificates, More..., Trusted
Certificates (see Figure 7.1). Certificates which chain to one of the certificates in the trust-
ed root list certificates are considered trustworthy. Since no Acrobat configuration by
the end user is required in order to successfully validate signatures which chain to one
of the certificates in Acrobat’s root store, it is recommended to create signatures with
certificates under the AATL or EUTL root CAs described below.

Adobe Approved Trust List (AATL). The AATL1 contains commercial, institutional and
governmental certificate authorities (CAs) from many countries around the world. At
the time of writing dozens of CAs participate in the AATL program.

1. See helpx.adobe.com/acrobat/kb/approved-trust-list1.html for more information and a list of participating CAs.

http://helpx.adobe.com/acrobat/kb/approved-trust-list1.html

7.1 Introduction 91

AATL root certificates are built into Acrobat and Adobe Reader X/XI/DC. Acrobat
trusts these root certificates and all certificates which chain up to one of these trusted
roots. No manual configuration is required to establish this trust relationship.The list
can be updated automatically on a regular basis, or manually via Edit, Preferences, Trust
Manager, Automatic Adobe Approved Trusted Certificates Updates.

AATL CAs issue certificates only on a secure token certified according to FIPS 140-2
Level 2, certified as a Secure Signature Creation Device (SSCD) according to EU regula-
tions, or equivalent standards. In many cases the certificate is stored on a SafeNet token
or a Hardware Security Module (HSM). AATL certificates are never distributed on file,
but only on a secure token.

Some CAs issue both AATL and non-AATL certificates under the same root. In this
case the certificate policy must explicitly state that the certificate has been issued in
compliance with the AATL rules. Otherwise Acrobat does not consider it as valid under
the known trusted root CAs.

Acrobat also includes CA certificates from Adobe’s older Certified Document Services
(CDS) program which was introduced in 2005 and is the predecessor of AATL. While
AATL CAs are directly treated as a trusted root in Acrobat, CDS certificates chain to the
Adobe Root certificate. The following CAs are part of the CDS program: Entrust, Global-
Sign, Keynectis, Post.Trust, and Symantec.

European Union Trust List (EUTL). Adobe Reader and Acrobat XI/DC support trusted
root certificates from the European Union Trust List (EUTL) according to ETSI TS 119 6121.
The EUTL update can be controlled via Edit, Preferences, Trust Manager, Automatic

1. See ec.europa.eu/digital-agenda/en/eu-trusted-lists-certification-service-providers

Fig. 7.1
List of trusted certificates in Acrobat

http://ec.europa.eu/digital-agenda/en/eu-trusted-lists-certification-service-providers

92 Chapter 7: Digital Signatures with PLOP DS

European Union Approved Trusted Certificates Updates. The EUTL includes root certificates
from the Trusted Lists of all EU member states according to the eIDAS framework ac-
cording to regulation 910/2014. Trust lists for all EU countries can be found at https://
webgate.ec.europa.eu/tl-browser/#/.

Manually adding trusted roots. Acrobat also accepts root certificates imported manu-
ally into Acrobat or Adobe Reader via Edit, Preferences, Signatures, Identities & Trusted
Certificates, More..., Trusted Certificates. The certificate must be configured as trusted root
via Edit Trust, Trust tab, and activating Use this certificate as trusted root. This may be use-
ful for enterprise PKIs with a custom root CA. While this configuration works for any
trusted root certificate, it requires manual intervention by the user and is therefore un-
desirable in some workflows.

Certificates in the Windows certificate store. Acrobat optionally treats root certifi-
cates in the Windows certificate store as trusted. This can be controlled via Edit,
Preferences, Signatures, Verification, More..., Windows Integration.

https://webgate.ec.europa.eu/tl-browser/#/
https://webgate.ec.europa.eu/tl-browser/#/

7.2 Signing with PLOP DS 93

7.2 Signing with PLOP DS
7.2.1 Overview

PLOP DS supports multiple cryptographic engines which implement the public key and
hashing algorithms required for digitally signing a document. Signatures are prepared
in the PLOP DS library with prepare_signature() and create_document() API method or the
option --signopt (shorthand notation: -S) of the PLOP DS command-line tool.

In order to apply a digital signature with PLOP DS you need a digital ID. If you work
with a digital ID file or token you need the corresponding password. If you work with a
personal (account-specific) digital ID in the Windows certificate store the ID is usually
protected by your Windows login.

Crypto engines for creating digital signatures. PLOP DS supports various cryptograph-
ic engines. A cryptographic engine is a piece of software or hardware which implements
various cryptographic functions that are required to generate digital signatures. The
choice of a cryptographic engine affects the format and storage location of digital IDs,
integration with other software and the operating system. PLOP DS supports the follow-
ing cryptographic engines:

> The builtin engine implements the required cryptographic functions directly in the
PLOP DS kernel, without any external dependencies. This engine is active by default,
but can also be selected explicitly with the signature option engine=builtin.

> The pkcs#11 engine refers to a software interface called PKCS#11 which provides uni-
fied access to cryptographic tokens, where token stands for a smartcard, USB stick or
other cryptographic device. Tokens offer higher security than software certificates,
and are often protected with a PIN. The PKCS#11 engine is also used for accessing a
Hardware Security Module (HSM). The PKCS#11 engine can be selected with the signa-
ture option engine=pkcs#11.

> The mscapi engine refers to the Microsoft Cryptographic API (available only on Win-
dows), which is an integrated part of the operating system. It allows PLOP DS to inter-
operate with the cryptographic infrastructure provided by Windows as well as third-
party software or hardware which is attached via a CAPI driver. The mscapi engine
can be selected with the signature option engine=mscapi.

> Alternatively a user-supplied cryptographic engine can be used to ensure that all
cryptographic operations (hashing and signing) are performed in a dedicated cryp-
tographic library. Attaching such an external cryptographic module requires a spe-
cial PLOP build which is available on request.

Supported formats for digital IDs. PLOP DS requires a digital ID for signing PDF docu-
ments. A digital ID contains the signer’s digital certificate plus the corresponding pri-
vate key, and is usually protected by a password or other means. PLOP DS supports the
following kinds of digital IDs:

> With engine=builtin: digital ID files in PKCS#12 format (usually .p12 or.pfx)
> With engine=pkcs#11: digital IDs stored on a smartcard or other cryptographic token

(device) attached to the computer.
> Windows with engine=mscapi: digital IDs in the Windows certificate store.

94 Chapter 7: Digital Signatures with PLOP DS

7.2.2 Signing with the built-in Engine
The built-in engine is the default engine. It works with file-based digital IDs and pro-
vides full functionality and control.

Unlocking the private key. Digital IDs (more precisely: the private key contained in
the digital ID) are generally protected with a password, passphrase, or PIN since they
contain the confidential private key for creating the digital signature. In order to unlock
a digital ID for use with PLOP DS you must provide proper authentication. If you supply
the wrong password PLOP DS will throw an exception.

You must supply the corresponding password with the password signature option. If
you are using the PLOP DS command-line tool it is strongly recommended to supply the
password indirectly in an auxiliary file with the passwordfile suboption. If you supply
the password directly instead of in a password file other users could possibly read it
since the command-line may be visible to other users on a multi-user system.

Option list example. The examples below show how to digitally sign PDF documents
with the PLOP DS command-line tool. The option list supplied to --signopt can be sup-
plied to the PLOP DS API method prepare_signature() in order to create a signature from
within your own program. Full programming examples for all supported language
bindings are contained in the PLOP DS package. The examples use the digital ID file
demo_signer_rsa_2048.p12 with the password demo which is included in the distribution
packages.

Create an invisible signature for a PDF document, using a digital ID from the file
demo_signer_rsa_2048.p12. The password for the digital ID is contained in the file pw.txt:

plop --signopt "digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

7.2.3 PKCS#11 Engine for a cryptographic Token
Using the PKCS#11 engine in PLOP DS you can use certificates on a cryptographic token
such as a smartcard or USB stick, or on a Hardware Security Module (HSM). Using such a
device for signature creation requires a DLL or shared library which implements a to-
ken-specific protocol. This PKCS#11 DLL/SO is provided by the token vendor as part of
the corresponding software package. It must be installed on the system and made avail-
able to PLOP DS. On Windows this means the DLL must either be copied to the Windows
system directory, a directory which is included in the PATH environment variable, or
the current directory of the application. Note that a PKCS#11 DLL/SO may depend on
other DLLs. In this case all required DLLs supplied by the vendor must be made available
to PLOP DS.

Selecting a private key. A signature device may contain multiple digital IDs, e.g. one
for encrypting E-mails and another one for digitally signing documents. If exactly one
signature certificate is present on the token PLOP DS automatically selects it. If multiple
signature certificates are present on the token you must supply one of the suboptions
issuer, label, serial or subject of the digitalid option to select the appropriate certificate by
one of these criteria. If the supplied options do not select exactly one signature certifi-
cate the call fails and no signatures can be created. A label can be assigned to a key with

7.2 Signing with PLOP DS 95

the administration software for the token. Issuer, serial number and subject are intrin-
sic fields of the certificate.

Unlocking the private key on a token. If the cryptographic token allows a password or
PIN to be submitted by software you must supply the password signature option as with
engine=builtin. If the token requires direct PIN or password entry (e.g. a smartcard reader
with attached keyboard) you can omit the password option (or supply an empty string)
and must manually type the PIN on the token’s keyboard. Details of password/PIN han-
dling vary among cryptographic tokens.

Some tokens automatic log out after a certain period of time or a specified number
of signatures. For mass signatures you must configure the token appropriately to avoid
automatic logout. Please refer to your token documentation for details. If the token au-
tomatically logs out you will experience the following error message:

Error adding signature data ('PKCS#11: couldn't create signature
(C_Sign: CKR_USER_NOT_LOGGED_IN)')

PKCS#11 example. In the following examples we refer to the vendor-specific PKCS#11
DLL as cryptoki.dll. The name of the actual DLL may be different.

Create an invisible signature for a PDF document, using a digital ID from a token ad-
dressed via PKCS#11. The PIN for the token is contained in the file pw.txt:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll} passwordfile=pw.txt"
--outfile signed.pdf input.pdf

Create an invisible signature for a PDF document, using a digital ID from a token ad-
dressed via PKCS#11. No PIN is supplied in this command; instead, the PIN for the token
must be typed at the token’s integrated keyboard:

plop --signopt "engine=pkcs#11 digitalid={filename=cryptoki.dll}"
--outfile signed.pdf input.pdf

Fig. 7.2
Smartcard reader with keyboard (left) and cryptographic USB token (right).
Both devices can be attached to PLOP DS with the PKCS#11 engine.

96 Chapter 7: Digital Signatures with PLOP DS

7.2.4 PKCS#11 Engine for a Hardware Security Module (HSM)
A Hardware Security Module (HSM) provides hardware-based security for the private
key and massive performance advantages compared to tokens or smartcards. HSMs are
typically deployed in the following scenarios:

> Commercial CAs offer HSM-based certificates. The HSM is typically run and managed
by the CA. For demanding applications the HSM may reside on the customer premis-
es. For example, GlobalSign, QuoVadis and Symantec offer HSM-based AATL certifi-
cates.

> In-house HSM deployment with an enterprise PKI.
> Cloud-based signatures: HSM services can be purchased along with CPU and storage

services. For example, IBM, Amazon Web Services (AWS) and Microsoft Azure offer
HSM hosting.

In our testing we found that the full HSM performance can be obtained only with a
multi-threaded client application or many independent simultaneous clients.

Supplying the signer’s certificate. The HSM creates a private/public key pair and safe-
ly stores the private key on the device. However, some HSMs don’t offer any straightfor-
ward way (or none at all) of storing the signer’s certificate with the corresponding pub-
lic key. Since the certificate must be embedded in the PDF signature you must make the
signer’s certificate available on file so that PLOP DS can embed it in the signed PDF. This
can be achieved with the signercert suboption of the digitalid option. This option is re-
quired for HSMs which hold only the private key, but not the corresponding public key.
The user is responsible for making sure that the certificate supplied with the signercert
option matches the private key selected with one of the id or label options. If they don’t
match, an invalid signature will be created.

PKCS#11 example for nCipher nShield HSM (formerly Thales nShield HSM). The fol-
lowing example demonstrates digital signatures with a nCipher nShield HSM. We as-
sume that a key pair has been generated with the HSM, a corresponding certificate is
available in a separate file and a suitable security world has been configured with the
administration software that accompanies the nShield appliance (refer to nShield docu-
mentation for details). In this situation PDF documents can be signed as follows:

plop --signopt "engine=pkcs#11 digitalid={label=demo_signer_rsa_2048
filename={/opt/nfast/toolkits/pkcs11/libcknfast.so}
signercert={demo_signer_rsa2048.crt}}" -o signed.pdf input.pdf

Using a somewhat convoluted procedure the signer’s certificate can be stored directly
on the HSM device. In this situation PDF documents can be signed with the following al-
ternative command:

plop --signopt "engine=pkcs#11 digitalid={label=demo_signer_rsa_2048
filename={/opt/nfast/toolkits/pkcs11/libcknfast.so}}" -o signed.pdf input.pdf

Note Please also take a look at the separate document »nCipher e-Security PDFlib PLOP DS Integra-
tion Guide«.

PKCS#11 example for AWS CloudHSM. AWS CloudHSM v2 stores only the private key
on the device, but does not support certificate storage. Since the certificate must be em-

7.2 Signing with PLOP DS 97

bedded in the PDF signature you must make the signer’s certificate available on file.
This can be achieved with the signercert suboption of the digitalid option:

plop --signopt "password={<username>:<pin>} engine=pkcs#11
digitalid={filename={/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so}
label=demo_signer_rsa_2048 signercert={demo_signer_rsa2048.crt}}"
-o signed.pdf input.pdf

When testing an application with multiple PLOP objects on CloudHSM we found that
prepare_signature() sometimes fails with the following error message:

Error in PKCS#11 operation ('couldn't open session (C_OpenSession: CKR_DEVICE_MEMORY)')

and corresponding console output created by the PKCS#11 library:

C_OpenSession failed with error CKR_DEVICE_MEMORY : 0x00000031

when attempting to load the PKCS#11 library again after a previous PLOP object has al-
ready been deleted. This error seems to be caused by a problem in the PKCS#11 imple-
mentation of CloudHSM. The problem can be avoided by supplying the sticky suboption
of the digitalid option.

PKCS#11 sessions and multi-threading. In order to improve performance of bulk sig-
natures, PLOP DS minimizes the number of load/unload operations for the PKCS#11
DLL/SO, and maximizes the duration of each PKCS#11 session. This requires the applica-
tion to obey to the following conditions:

> At any time only a single PKCS#11 DLL/SO can be loaded until delete() has been called
for the last PLOP object which used that library. After deleting the last PLOP object
another PKCS#11 DLL/SO can be specified in prepare_signature(). In other words, any
number of PKCS#11 slots can be addressed in a multi-threaded manner provided all
token slots are served by the same DLL/SO (which usually means the same type of to-
ken).

> prepare_signature() in a particular thread must not access a PKCS#11 slot which is al-
ready accessed from another thread. Multi-threaded applications which want to sign
with the same token from within multiple threads must synchronize the threads by
suitable means, e.g. a mutex.

> Multi-threaded applications require a thread-safe PKCS#11 library. The suboption
threadsafe=true in the digitalid option list checks whether the library is thread-safe
and initializes it in a thread-safe manner.

> The PKCS#11 DLL/SO can optionally be kept in memory even after the last use with
the sticky suboption of the digitalid signature option. This may slightly speed up sig-
nature operation. However, no other PKCS#11 DLL/shared library can be loaded in
the same process.

Fig. 7.3
A Hardware Security Module (HSM) can be attached to PLOP DS with the PKCS#11 engine

98 Chapter 7: Digital Signatures with PLOP DS

A new session is created in the first call to prepare_signature() for a particular slot and
maintained until prepare_signature() is called again in the same thread. If no more sig-
natures will be created in a thread, the PKCS#11 session can explicitly be terminated by
calling prepare_signature() with the option signature=false. For this reason the applica-
tion should call prepare_signature() only once for as many output documents as possi-
ble. For example, as long as the same PKCS#11 slot is addressed and the token’s restric-
tions are met (e.g. maximum number of signatures or maximum time for consecutive
signatures) no more calls to prepare_signature() are required.

A full code sample for efficiently applying bulk signatures is available in the multi-
sign sample which is part of all PLOP DS packages. Note that the multisign logic offers sig-
nificant performance advantages for token-based signatures in comparison to the
PLOP DS command-line tool.

7.2.5 Signing with the MSCAPI Engine on Windows
Using the MSCAPI engine allows you to take advantage of the signature features built
into the Windows operating system. Most importantly, you can access digital IDs in the
Windows certificate store. On the other hand, the MSCAPI engine is subject to certain re-
strictions which don’t affect other cryptographic engines. For example, MSCAPI does
not support ECDSA.

Note OSCP and CRL embedding as well as timestamping are not supported for engine=mscapi. As a
result, LTV-enabled signatures can not be created with the MSCAPI engine.

Unlocking the private key. Depending on your certificate settings the digital IDs in
the Windows certificate store may be protected by your Windows login, and no addi-
tional password is required. If you enabled high security when importing the certificate
into the Windows certificate store you are prompted for the password whenever the
certificate is used for signing.

Option list examples for MSCAPI. The examples below assume that the digital ID for
signing is available in the Windows certificate store. In order to achieve this with the
PLOP DS demo certificates you must double-click and install the digital ID in the file
demo_signer_rsa_2048.p12 in the Windows certificate store.

Create an invisible signature for a PDF document, using a certificate from the Windows
Certificate Store (from the default store My and the default store location current_user).
This assumes that the digital ID is protected by your Windows login so that no password
must be supplied:

plop --signopt "engine=mscapi digitalid={store=My subject={PLOP Demo Signer RSA-2048}}"
 --outfile signed.pdf input.pdf

Create an invisible signature for a PDF document, using a certificate in the file
demo_signer_rsa_2048.p12:

plop --signopt "engine=mscapi digitalid={filename=demo_signer_rsa_2048.p12}
passwordfile=pw.txt" --outfile signed.pdf input.pdf

Create an invisible signature and encrypt the document with the master password
SECRET for PDF encryption and password demo for accessing the digital ID:

7.2 Signing with PLOP DS 99

plop --master SECRET --signopt "digitalid={filename=demo_signer_rsa_2048.p12}
password={demo}" --outfile signed.pdf input.pdf

Managing the Windows certificate store. The Windows operating system can hold
certificates which are organized in several certificate stores. To install a new certificate
in PKCS#12 format simply double-click on the certificate file and follow the Certificate
Import Wizard. You can try this with the demo certificates in the PLOP DS package, us-
ing the password demo.

You can view and organize certificates with the Microsoft Management Console
(MMC) as follows:

> Click on Start and type mmc in the box for program names to launch the program.
> In the File menu click Add/Remove Snap-in...
> In Available Standalone Snap-ins select Certificates and click Add.
> In the next dialog select My user account and Finish. Alternatively, use Service account

or Computer account if this is the store location of your certificates.
> Click OK.

Now you can browse the installed certificates. Your own certificates are available in the
Personal category, which can be addressed in PLOP DS with the following option list
(supplied to the --signopt command-line option or prepare_ signature()):

engine=mscapi digitalid={store=My subject={PLOP Demo Signer RSA-2048}}

You can view certificate details by double-clicking on a certificate in MMC. In order to
export a certificate in PFX format right-click on a certificate in the list and click All Tasks,
Export... . This launches the Certificate Export Wizard.

Using the Management Console you can also import a certificate: right-click on a cer-
tificate store (e.g. Personal) and select All Tasks, Import... .

7.2.6 Cryptographic Details
Digital signatures are characterized by an encryption algorithm and a hash algorithm
plus parameters for both. Encryption algorithm and key length for generating signa-
tures are determined by the signer’s digital ID. They are specified when creating the
public/private key pair for the digital ID. PLOP DS supports the signature algorithms
listed below.

RSA signatures. RSA is supported with key lengths in the range 1024-8192 (3072-bit or
more recommended). RSA is widely used on the Internet and many other application ar-
eas. RSA signatures require a so-called encoding method (Encoding Method for Signatures
with Appendix, EMSA):

> The default encoding method according to PKCS#1 v1.5 is supported in all Acrobat
versions. However, it is being phased out in many signature applications.

> The newer EMSA-PSS (Probabilistic Signature Scheme) encoding method according to
RFC 3447/RFC 8017 offers provable security. EMSA-PSS is also called SSA-PSS or PKCS
#1 v2.1. EMSA-PSS signatures can be created with the signature option
rsaencoding=pss.
Validation of EMSA-PSS signatures requires Acrobat XI 11.0.19 or Acrobat DC
2015.006.30280 for Windows (January 2017 updates) or above, or Acrobat DC
2015.006.30392 for macOS. Older versions of Acrobat regard PSS signatures as inval-
id. PSS signature creation with Acrobat works with Acrobat DC 2017.012.20093 Con-

100 Chapter 7: Digital Signatures with PLOP DS

tinuous Track on macOS and Windows (released in August 2017). These versions of
Acrobat DC also display the RSA encoding method in the Advanced Signature
Properties dialog (see Figure 7.4).

Note EMSA-PSS signatures are not supported for engine=mscapi.

DSA signatures. DSA is supported with key lengths in the range 1024-4096 (3072-bit or
more recommended). DSA is not widely used. Since Acrobat supports only DSA with the
insecure SHA-1 hash algorithm, there are security concerns regarding the use of DSA.

Note DSA signatures are not supported for engine=pkcs#11.

Elliptic curve cryptography. ECDSA (Elliptic Curve Digital Signature Algorithm) is the
modern successor of RSA. Key lengths commonly go up to 512-bit (256-bit or more rec-
ommended). The main advantage of ECDSA over RSA is a smaller key size to achieve the
same cryptographic strength, which in turns implies performance benefits. The
strength of ECDSA is determined by a curve which is characterized by parameters or
more commonly a name. There are three common groups of ECDSA curves:

> The most common curves have been standardized by NIST and listed in RFC 5480.
They are called P-256, P-384, and P-521; other names are secp256r1 (or prime256v1),
secp384r1, and secp521r1. These curves are supported in Acrobat XI/DC.

> RFC 5480 defines an additional set of 12 named curves recommended by NIST. These
are also supported in Acrobat XI/DC when loading the digital ID directly in Acrobat,
but not for certificates in the Windows certificate store or macOS key chain.

> RFC 5639 defines a set of curves called Brainpool curves. Signatures based on Brain-
pool curves cannot be validated with Acrobat XI/DC. Unfortunately, Acrobat doesn’t
clearly indicate that the signature algorithm is unsupported, but instead issues the
following error message for Brainpool signatures:

There are errors in the formatting or information contained in this signature.

Since Acrobat cannot validate signatures based on Brainpool curves, these require
the signature option conformance=extended.

Note ECDSA signatures are not supported for engine=mscapi.

Hash Algorithms. A hash algorithm is used to create a message digest for the signed
data. Common hash algorithms are SHA-1 (no longer considered secure) and the stron-
ger algorithms in the SHA-2 family which includes SHA-256, SHA-384 and SHA-512. The
hash algorithm used for a signature can be displayed in Acrobat XI/DC as follows (see
Figure 7.4):

> open the Signatures pane;
> select a signature and select Show Signature Properties... in the Signatures menu.
> click Advanced Properties... ;
> the resulting dialog entitled Advanced Signature Properties displays Signature Details

including hash algorithm and encoding method.

Table 7.1 lists signature algorithms and corresponding hash functions. The table also
lists the minimum required Acrobat version for validating a signature. If you plan to
validate PDF signatures with Acrobat you must make sure to use an Acrobat version
which supports the signature characteristics. Table 7.1 also lists the minimum PDF out-

7.2 Signing with PLOP DS 101

put version created for each signature algorithm. If the input document uses a lower
PDF version number PLOP DS increases the PDF version of the output document to the
one listed in the table.

Table 7.1 Signature algorithms, hash algorithms, PDF output version and required Acrobat versions

signature algorithm hash algorithm
PDF output version and minimum Acrobat
version required for validation1

1. In PDF/A and PDF/X modes the PDF version of the input document remains unchanged.

Approval and certification signatures

RSA up to 8192 bit SHA-256 sigtype=cades: PDF 1.7ext8 / Acrobat X
sigtype=cms: PDF 1.6 / Acrobat 72

rsaencoding=pss: Acrobat XI 11.0.19 or
Acrobat DC 2015.006. 30280 (January 2017)
for Windows; July 2017 update for macOS

2. RSA-8192 keys require Acrobat X or above for validation and are not supported by Acrobat on macOS

DSA up to 4096 bit SHA-1 (Acrobat X/XI/DC don’t sup-
port other hash algorithms for DSA)

sigtype=cades: PDF 1.7ext8 / Acrobat X
sigtype=cms: PDF 1.6 / Acrobat 7

ECDSA with NIST curves (RFC 5480)
P-256/P-384/P-521

SHA-256, SHA-384 or SHA-512
depending on the curve

PDF 1.7ext8 / Acrobat XI

ECDSA with NIST curves (RFC 5480)
other than P-256/P-384/P-521

SHA-256, SHA-384 or SHA-512
depending on the curve

PDF 1.7ext8 / Acrobat XI/DC
(not with Windows certificate store or
macOS key chain)

ECDSA with 14 Brainpool curves
(RFC 5639)

SHA-256, SHA-384 or SHA-512
depending on the curve

PDF 1.7ext8 / cannot be validated with
Acrobat XI/DC
(requires conformance=extended)

Document-level timestamps

determined by the TSA SHA-256 by default, but can be
changed with doctimestamp sub-
option hash

PDF 1.7ext8 with PAdES part 4 extension /
Acrobat X

OCSP request and response (certificate identification)

determined by the OCSP responder SHA-1 by default, but can be
changed with ocsp suboption hash

Acrobat DC and below support only SHA-1
for OCSP;
(others require conformance=extended)

Fig. 7.4
Acrobat displays the hash
algorithm and encoding
method of a signature

102 Chapter 7: Digital Signatures with PLOP DS

7.3 PDF Aspects of Signatures
7.3.1 Visualizing Signatures with a Graphic or Logo

Digital signatures can be integrated in the document in the following ways:
> Invisible signatures don’t have any representation on a page. They are shown in

Acrobat’s Signatures pane only. Document-level timestamp signatures are always
created as invisible signatures.

> Visible signatures may contain arbitrary text or graphics to display the signature vi-
sually at a specific location on a page (see Figure 7.5). A page from an existing PDF
document can be used to create the signature’s visual appearance. Visual signatures
are also represented in the Signatures pane. The document from which this page is
taken is called the visualization document. Since the visualization page is placed in
the field which holds the signature, you can click the visualization in the signed doc-
ument to validate the signature in Acrobat.

Note Although technically it would be possible to repeat the signature visualization on multiple
pages, this is not supported in PLOP DS because of legal uncertainties related to a non-unique
signature visualization. Because of these uncertainties repeated signature visualizations are
explicitly forbidden in PDF 2.0.

Fig. 7.5
A visualization page is inserted

into the signature field and scaled
to match the field size

7.3 PDF Aspects of Signatures 103

Signature visualization document. The PDF page used for signature visualization may
contain a scanned hand-written signature, an official seal or a company logo, a photo of
the holder of the signing certificate, or any other visible representation which may be
useful to recipients of the signed document.

If the visualization document uses a higher PDF version than the signed input docu-
ment, the PDF version of the generated output is adjusted accordingly. PDF 1.7ext3 (Acro-
bat 9) and PDF 1.7ext8 (Acrobat X/XI/DC) documents are compatible with PDF 1.7 regard-
ing their use as visualization page.

Note Signature visualization for PDF/A imposes certain conditions on the visualization document
(see »PDF/A conformance«, page 104). Visualizing digital signatures is not supported in PDF/X
and PDF/VT modes.

The visualization document must be opened with open_document(). You must supply
its document handle to the visdoc suboption of the field option:

field={visdoc=<handle> rect={100 100 300 150}}

Location and size of the signature field. The field signature option controls the repre-
sentation of the signature on the page. Location and size of the signature visualization
page on the visible page of the signed document can be specified with the rect subop-
tion of the field option. The size can be specified explicitly, or implicitly by specifying
one corner and one or two of the other dimensions. The missing values are specified
with the keyword adapt to calculated automatically to avoid distortion. With the adapt
keyword you can attach the visualization page to any corner of the signature rectangle.
The resulting rectangle must not exceed the page. The examples below demonstrate
various combinations:

> The simplest approach is to prepare the visualization page in the desired target size.
In this case you can simply supply the coordinates of the lower left corner of the
field and PLOP DS will use the original page dimensions for the signature visualiza-
tion:

rect={100 100 adapt adapt}

> Attach to the lower left corner, maintain the width and adapt the height to avoid dis-
tortion:

rect={100 100 300 adapt}

> Attach to the lower left corner, adapt the width and maintain the height to avoid dis-
tortion:

rect={100 100 adapt 200}

> Force-fit the page into the rectangle, i.e. maintain both width and height of the rect-
angle. If the page and the rectangle have different width/height ratios the visualiza-
tion page appears distorted:

rect={100 100 300 200}

In order to calculate a suitable signature field rectangle dynamically depending on the
size of the visualization page you can use the pCOS interface to query the page dimen-
sions (keep in mind that pCOS page indexes start at 0):

104 Chapter 7: Digital Signatures with PLOP DS

width = plop.pcos_get_number(visdoc, "pages[" + (vispage-1) + "]/width");
height = plop.pcos_get_number(visdoc, "pages[" + (vispage-1) + "]/height");

Signing into an existing form field. If the input document already contains a signa-
ture field you can use this field for the signature and its visualization. In order to
achieve this you can supply the name of the existing field if you know it:

field={name=MyExistingFieldName visdoc=<handle>}

If you don’t know the field name you can instruct PLOP to use an existing signature
field as follows:

field={fillexisting visdoc=<handle>}

Even if you sign into an existing field you can modify its position and size with the rect
field option. If you create a signature into an existing field and the field uses a visible
rectangle on the page you must supply the visdoc option (or make the field invisible
with the field option rect={0 0 0 0}).

Placing the visualization page inside the signature field. The visualization page is
placed in the signature field and scaled such that it entirely fits into the rectangle while
preserving its aspect ratio. This is particularly useful if you want to place the signature
in an existing form field and the width/height ratio of the field and the visualization
page don’t match.

The position suboption of the field option can be used to specify the placement of the
visualization page inside the signature field.

By default, the visualization page is centered horizontally and vertically in the field.
This can be changed, e.g. to place the visualization page at the lower left corner of the
signature field:

field={name=MyExistingFieldName visdoc=<handle> position={left bottom} }

pCOS. Signature visibility is reported in pCOS as signaturefields[...]/visible=true. The in-
formation whether or not a signature field already contains a signature can be queried
with signaturefields[...]/sigtype != none.

7.3.2 PDF/A, PDF/UA, PDF/X and PDF/VT Conformance
Unless mentioned otherwise in this manual, all PLOP operations conform to PDF/A,
PDF/UA, PDF/VT and PDF/X regulations which means that standard conformance is
maintained by PLOP. However, there are some exceptions to this rule where PLOP oper-
ations are prohibited by a particular standard, e.g. encryption in PDF/A. In such cases
you must consider your priorities:

> If you must maintain standard conformance the operation will be rejected by PLOP.
This is the default behavior.

> If the operation (e.g. encryption) is more important than standard conformance, you
can remove the standard identifier with the sacrifice option.

Specific notes on the relevant standards are provided below.

PDF/A conformance. The PDF/A standard allows CMS- and CAdES-based signatures.
PDF/A-2 and PDF/A-3 recommend to embed a timestamp, revocation information, and

7.3 PDF Aspects of Signatures 105

as much of the certificate chain as is available, but this is not a strict requirement and
therefore not enforced by PLOP DS.

In PDF/A mode, i.e. if the input conforms to PDF/A and the sacrifice option has not
been set to pdfa, a signature visualization document must be compatible regarding its
PDF/A characteristics:

> The PDF/A level of the visualization document must be compatible (see Table 7.2).
> The output intent of the visualization document must be compatible (see Table 7.3).

Tip: a PDF/A-1a visualization document without an output intent (highlighted in red in
Table 7.2 and Table 7.3) is compatible with all PDF/A parts, conformance levels, and out-
put intent types. The PLOP DS distribution contains a sample visualization file signing_
man_pdfa1a.pdf with these characteristics. It can be used as visualization document for
testing with all PDF/A flavors. A PDF/A-1b visualization document without an output in-
tent is compatible with the b conformance levels of all PDF/A parts.

If you don’t care about PDF/A conformance you can remove the standard confor-
mance entry with the following option:

sacrifice={pdfa}

PDF/UA conformance. The PDF/UA requirements for invisible signature form fields
have been relaxed per the »Tagged PDF Best Practice Guide« (published in 2019 by the
PDF/UA Competence Center of the PDF Association). In particular, invisible signature
fields don’t have to be included in the structure hierarchy and don’t require any special
preparations or signature options.

Table 7.2 Compatible PDF/A levels of the visualization document for various PDF/A input levels

PDF/A level of the visualization document

PDF/A level of the
input document PDF/A-1a:2005 PDF/A-1b:2005

PDF/A-2a,
PDF/A-3a

PDF/A-2b,
PDF/A-3b

PDF/A-2u,
PDF/A-3u

PDF/A-1a:2005 allowed – – – –

PDF/A-1b:2005 allowed allowed – – –

PDF/A-2a, PDF/A-3a allowed – allowed – –

PDF/A-2b, PDF/A-3b allowed allowed allowed allowed allowed

PDF/A-2u, PDF/A-3u allowed – allowed – allowed

Table 7.3 PDF/A output intent compatibility of visualization documents (for all PDF/A conformance levels)

output intent type of visualization document

output intent type of the input document none Grayscale RGB CMYK

none allowed – – –

Grayscale ICC profile allowed allowed1

1. The output intent of the visualization document and the output intent of the input document must be identical.

– –

RGB ICC profile allowed – allowed1 –

CMYK ICC profile allowed – – allowed1

106 Chapter 7: Digital Signatures with PLOP DS

Note The Accessibility check in Acrobat DC does not implement this relaxed rule. It still reports
»Tagged annotations - Failed« for an invisible signature form field which is not included in the
structure hierarchy.

In order to use visible signature fields you must prepare a suitable form field with alter-
nate text in the input document; creating a new field is not possible. In Acrobat XI/DC
this can be achieved as follows for an existing PDF/UA document:

> Acrobat DC: Click Tools, Prepare Form,select the document, Start. In the list of form
tools in the toolbar near the top select the Signature form tool.
Acrobat XI: Open the Tools pane and open the Forms panel. Select Create. In the result-
ing dialog choose From Existing Document, Next, Current Document. In the Tasks section
of the Forms pane, click Add New Field, Digital Signature.

> Draw a form field rectangle on the page.
> Close the Prepare Form window (Acrobat DC) or click Close Form Editing (Acrobat XI)

and open the Tags pane.
> Click the options button at the top of the Tags pane and choose Find... .
> In the resulting dialog select Unmarked Annotations and click Find.
> The signature field just created should now be highlighted. In the Find Element dialog

click Tag Element, choose Type: Form, optionally supply a field title, and click OK.
> In the Tags pane the newly created Form structure element should show up at the end

of the tag list. Select the tag and move it to a suitable position in the tags hierarchy,
corresponding to the position in the structure tree where you want the signature
field to be read.

> It is recommended to assign alternate text for the signature field: right-click the
Form structure element in the hierarchy, select Properties..., and enter suitable alter-
nate text for the field.

Assuming the signature field has been assigned the name Signature1 you can reference it
by name in the signature option list as target field for the signature:

field={name=Signature1}

Alternatively you can instruct PLOP DS to place the signature in the existing field re-
gardless of its name:

field={fillexisting}

The tooltip suboption of the field signature option can be used to provide a suitable al-
ternate description of the signature field for use by screen reader software.

If you don’t care about PDF/UA conformance you can remove the standard confor-
mance entry with the following option:

sacrifice={pdfua}

PDF/X and PDF/VT conformance. Signature visualization is not supported in PDF/X
and PDF/VT modes.

If you don’t care about PDF/X conformance you can remove the standard confor-
mance entry with the following option (similar for PDF/VT):

sacrifice={pdfx}

7.3 PDF Aspects of Signatures 107

7.3.3 Document Security Store (DSS)
A dedicated PDF data structure called Document Security Store (DSS) can hold certifi-
cates and related OCSP and CRL revocation information. This material is collectively
called validation information and plays an important role for long-term validation. The
DSS has been introduced with PAdES part 4 and is included in ISO 32000-2. While the
DSS is optional for approval and certification signatures, it is required for enabling
long-term validation of document timestamps and timestamped signatures.

Storing validation information in the DSS instead of in the signature object reduces
the file size because unlike the signature object the DSS can be compressed and doesn’t
require ASCII representation (which doubles the size of the signature). Also, the DSS
may hold data for validating multiple document signatures, while the signature object
holds only validation information for a single signature.

Some pieces of validation information can be stored only in the signature object,
some only in the DSS, and some in both locations. The signature option dss can be used
to control the storage location of the items in the last group. Table 7.4 compares both lo-
cations.

PLOP DS preserves an existing DSS with validation information for earlier signatures
which may be present in the input document. The new DSS includes the contents of the
existing DSS plus validation information for the new signature. This ensures that the
LTV status of existing signatures is kept intact.

In Acrobat a DSS can be added to a signed document by opening the Signatures pane
and clicking Add Verification Information in the Options menu.

pCOS. The presence of a DSS can be checked with the pCOS path type:/Root/DSS which
has the value 6 (dict) if a DSS is present. Note that a DSS in itself does not automatically
guarantee LTV status since it could contain only a subset of the required certificates and
revocation information.

7.3.4 Signatures and incremental PDF Updates
By default, PLOP DS appends digital signatures to the input document using a PDF tech-
nique known as incremental update: a copy of the input document is created and signa-
ture data is appended at the end, preserving the contents and structure of the original

Table 7.4 Storage locations for various pieces of validation information

signature object
Document Security
Store (DSS)

controlled by
dss option

signing certificate yes – –

TSA certificate – yes –

certificates other than the signing and TSA certifi-
cate (e.g. issuer of signing certificate), and corre-
sponding OCSP responses and CRLs

yes yes yes

OCSP responses and CRL for the signing certificate yes yes yes

OCSP responses and CRLs for TSA certificates1

1. If validation information for timestamps must be embedded, PLOP DS always appends a DSS as incremental update.

– yes –

108 Chapter 7: Digital Signatures with PLOP DS

document. With the signature option update=false PLOP DS rewrites the hierarchy of
PDF objects instead of adding an incremental PDF update. Table 7.5 compares signatures
in update and rewrite mode.

Signing damaged documents. Errors in the PDF cross-reference table or the docu-
ment’s object structure cannot be repaired when signing in update mode. If a document
requires repairing in open_document() and is subsequently signed in update mode,
create_document() will fail with the error message

Cannot sign damaged input document 'bad.pdf' in update mode; use update=false
(invalid xref table)

In order to detect damaged documents already in open_document() you can supply the
option repair=none. As a result, open_document() will fail for damaged documents. If you
need to sign documents which require repair you must use update=false; see Table 7.5 for
implications.

Reverting to earlier revisions of a signed document. Since incremental updates only
add information to a document the structure of the input document is preserved. If a
signed document is modified, the signed revision can be reconstructed by removing the
incremental updates. In Acrobat XI/DC this can be achieved as follows:

> open the signature pane, select a signature and expand it by clicking the plus sign;
> select Click to view this version to revert to the signed revision.

If the signature is LTV-enabled via a DSS in a separate incremental update, this update
will be removed by reverting to the signed revision. As a result, the signature in the ear-
lier revision may no longer be displayed as LTV-enabled although the same signature in
the full document is displayed as LTV-enabled. This is a result of removing incremental

Table 7.5 Comparison of signing in update and rewrite mode

Update mode
(update=true)

Rewrite mode
(update=false)

existing signatures preserved lost1

1. Signing documents with existing signatures in rewrite mode requires sacrifice={signatures} which implies that the
signatures are removed. If the sacrifice option is not supplied, signed input documents are rejected.

DSS for approval and certification signatures can be added yes yes

DSS for document-level timestamps and timestamped sig-
natures (required for LTV) can be added

yes –2

2. If validation information for timestamps is embedded, PLOP DS always appends a DSS as incremental update.

existing DSS is preserved yes yes

encryption with new parameters possible
(userpassword, masterpassword, permissions)

– yes

optimization possible – yes

repair mode for damaged input documents possible – yes

signature speed slightly faster slightly slower

previous document version (before applying the signature)
can be recovered in Acrobat

yes no

7.3 PDF Aspects of Signatures 109

PDF updates and does not affect the actual LTV status of the signatures in the complete
document. This issue does not affect timestamp signatures since Acrobat does not re-
quire full validation information for the TSA.

This effect only occurs if validation information in a DSS is appended in an incre-
mental update, and can therefore be avoided in two ways:

> set dss=false to avoid the DSS;
> set update=false to avoid incremental updates.

Both options don’t affect document-level timestamps and embedded timestamps
which always require a DSS in an incremental update.

pCOS. The number of document revisions by incremental updates is reported in the
pCOS pseudo object revisions. While each signature creates a new revision, revisions may
also be created by other changes, e.g. adding a DSS. The number of revisions therefore
may be larger than the number of signatures in the document.

7.3.5 Combining Encryption with Signatures
The combination of encrypting and signing requires attention since first signing and
then encrypting a document would invalidate the signature. You can either encrypt and
sign in a single pass, or sign an encrypted input document in update mode.

Encrypt and sign in a single pass. The simplest approach is to apply both encryption
and signature in a single pass. Since the input file must be modified signing is only pos-
sible in rewrite mode. Encryption options, i.e. userpassword, masterpassword or recipient
certificates can be supplied together with signature options. If any of these encryption
parameters is supplied, the signature is automatically applied in rewrite mode, i.e.
update is forced to false.

Sign encrypted input documents in update mode. Encrypted input documents can be
signed in update mode. However, the encryption parameters cannot be changed in this
case. This has the following consequences:

> The input document’s master password must be provided in the password option (or
a suitable digital ID for documents protected with certificate security).

> If update=true is supplied, the encryption, masterpassword, permissions, and userpass-
word options are not allowed and add_recipient() must not be called since the values
of the input document are used for the output document.

7.3.6 Certification Signatures
Certification (author) signatures have been introduced in »Certification signatures«,
page 89. When opening a document with a certification signature Acrobat displays a
badge in the blue document message bar near the top and in Acrobat’s Signatures pane
(again with a badge if it is valid). Certification signatures specify which kind of changes
may be applied to the document without invalidating the signature (see Figure 7.6 and
Table 7.6). Certification signatures can be created with PLOP DS with the certification op-
tion.

The following signature options create a certification signature such that form fill-
ing is allowed without invalidating the signature:

110 Chapter 7: Digital Signatures with PLOP DS

digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt
certification=formfilling

The preventchanges suboption can be used to disable tools in the Acrobat user interface
which would invalidate the signature, e.g. commenting tools. This way the user is not
tempted to apply changes which would break the certification signature. When certify-
ing documents with Acrobat changes are always prevented. The preventchanges option
is set to true by default. If preventchanges=false Acrobat enables all editing tools. Howev-
er, modifications which are not allowed still invalidate the certification signature.

Since a certification signature must always be the first signature in a document it
shouldn’t be applied to a document which already contains a signature.

Table 7.6 Document modifications which are allowed without breaking a certification signature

type of signature (option list) changes which are allowed without breaking the signature
en

te
r f

or
m

fie
ld

 v
al

ue
s

di
gi

ta
lly

 si
gn

an
d

ad
d

pa
ge

s1

1. Adding pages with a rarely used technique called spawning page templates is allowed, but not manually adding pages with Tools, Pages,
Insert Pages.

cr
ea

te
, d

el
et

e
or

 m
od

ify
an

no
ta

tio
ns

ad
d

sig
na

tu
re

fie
ld

s2
2. Adding signature fields via Fill&Sign, Place Signature is allowed, but not adding form fields with Tools, Forms, Edit.

al
l o

th
er

m
od

ifi
ca

tio
ns

certification=nochanges – – – – –

certification=formfilling yes yes3

3. Only signing by clicking a signature field is allowed, but not via Acrobat’s menu items.

– – –

certification=formsandannotations yes yes3 yes – –

certification=none
(i.e. approval signature or document-level
timestamp signature)

yes yes yes yes –

Fig. 7.6 Certification signature with »form filling and signing allowed« in Acrobat

7.3 PDF Aspects of Signatures 111

Validity of certification signatures in Acrobat. Even if a certification signature is tech-
nically valid there are some additional requirements for fully leveraging the benefits of
certified documents in Acrobat:

> Certification signatures are most easily created with certificates from an AATL CA
(see »Trusted Root Certificates in Acrobat«, page 90). Since the Adobe Root CA auto-
matically has the required trust setting no configuration steps are required.

> If end-user certificates under a root which is not known to Acrobat are intended to
create certification signatures, it is recommended to assign the necessary trust level
to the root certificate in Acrobat as follows:
Edit, Preferences..., Signatures, Identities & Trusted Certificates, More..., Trusted Certificates,
select the root certificate, Edit Trust, and activate Certified documents.
As a result, all certification signatures created with certificates under the selected
root are accepted as valid.

> For an individual certificate you can also set the required trust level. However, this is
rather untypical and not recommended. Proceed as follows:
Open the Signatures pane, select the certification signature, Certificate Details..., select
the signing certificate in the certificate chain (i.e. the one at the bottom of the list),
open the Trust tab, click Add to Trusted Certificates..., click OK in the informative mes-
sage dialog, and edit the Trust settings.

If you don’t apply any of the methods described above, Acrobat flags the certification
signature with a yellow triangle instead of the badge and adds the text »The signer’s cer-
tificate has not been trusted for the purpose of creating Certified documents«.

pCOS. Certification signatures are reported in pCOS as signaturefields[...]/sigtype=
certification. The kind of allowed changes can be queried with signaturefields[...]/permiss-
ions which returns one of the keywords nochanges, formfilling, or formsandannotations.

The pCOS pseudo object signaturefields[...]/preventchanges can be used to check
whether Acrobat’s user interface elements will be disabled to make sure that the certifi-
cation signature cannot accidentally be invalidated by applying prohibited changes.

Signing certified documents where changes are prohibited. Since a certification signa-
ture must be the first signature in a document, additional signatures can usually be ap-
plied after the first one. However, sometimes the certification signature has been creat-
ed with the »No changes are allowed« setting (in PLOP DS: certification=nochanges). This
kind of input document raises a conflict which must be resolved by the application de-
veloper: while the file prohibits any changes including signatures, the application
wants to sign which would invalidate the certification signature (unlike approval signa-
tures, which allow additional signatures in update mode without being invalidated).
This is even true for signing in update mode since the certification doesn’t allow any
kind of changes. The conflict can be resolved in the following ways:

> Default behavior: the input is rejected since the existing certification signature has
priority over the new signature.

> The certification signature is removed and the new signature applied. This can be
achieved with the option sacrifice=signatures of create_document().

112 Chapter 7: Digital Signatures with PLOP DS

7.4 Certificate Revocation Information
A signature can optionally include information about the revocation status of the sign-
ing certificate. This information can be used by signature validation software to make
sure that the certificate was still valid (has not been revoked) at the time of signature.
Two different methods are available to achieve this.

In Acrobat XI/DC you can check revocation information in the certificate viewer as
follows: open the Signatures pane, right-click the signature and select Show Signature
Properties..., Show Signer’s Certificate..., and go to the Revocation tab (see Figure 7.7 and Fig-
ure 7.8).

7.4.1 Online Certificate Status Protocol (OCSP)
Note OCSP response embedding is not supported for engine=mscapi.

OCSP overview. When OCSP according to RFC 2560 and RFC 6960 is used, the signing
software sends a network request to an OCSP server (also called OCSP responder) to que-
ry the certificate’s status in real-time. An OCSP responder is a server with real-time ac-
cess to the CA’s database of issued and revoked certificates. The OCSP responder checks
whether the certificate is valid at the time of the query and returns a signed response
with the result. This OCSP response is embedded in the signature.

A certificate may contain an extension called Authority Info Access (AIA) with the ocsp
access method according to RFC 3280. This is usually the case for AATL certificates (see
»Adobe Approved Trust List (AATL)«, page 90). This extension contains a URL for an
OCSP responder associated with the CA which issued the certificate. The URL can alter-
natively be supplied via the ocsp signature option. When PLOP DS sends an OCSP re-
quest for a particular certificate, the OCSP server returns a signed response with the sta-
tus good, revoked, or unknown for the certificate. In order to create a good OCSP response
all of the following conditions must be met:

Fig. 7.7
OCSP information displayed in Acrobat

7.4 Certificate Revocation Information 113

> An AIA extension with the ocsp access method must be present in the digital ID or
the source suboption of the ocsp signature option must be supplied.

> The OCSP responder can be reached over the network at the specified URL and sends
a response within the period specified in the timeout suboption of the source subop-
tion of the ocsp signature option.

> The OCSP response contains the status good which requires that the certificate has
been issued by the CA which is served by the OCSP responder, is valid (i.e. has not
reached the end of its validity period) and has not been revoked.

> The signing time must lie in the interval defined by the entries thisUpdate and
nextUpdate in the OCSP response, or (if nextUpdate is not present) the signing time
must not be after thisUpdate plus the value specified in the freshness suboption. Both
checks allow a tolerance up to the value of the maxclockskew suboption to compen-
sate network delays or inaccurate system time.

If the OCSP response is good, PLOP DS embeds the response in the generated signature.
Otherwise the unusable response is either ignored or no signature is created, depending
on the critical suboption. By default PLOP DS uses the OCSP responder’s URL in the AIA
extension if present in the signer’s digital ID and silently ignores situations without
any good OCSP response. However, if OCSP response embedding is explicitly requested
with the ocsp option a good response is required for generating a signature unless the
critical option has been set to false.

OCSP configuration. Depending on the PKI in use you must consider the following
configuration issues for OCSP responses:

> If no AIA extension is present in the certificate, you must supply an OCSP responder
with the source suboption of the ocsp option.

> A valid certificate for the issuer of the signer’s certificate is required for creating the
OCSP request. It is often included in the signer’s digital ID; otherwise it must be sup-
plied separately with one the rootcertdir/rootcertfile/certfile signature options.

> Since the OCSP responder may require authentication for successful network com-
munication several authentication options are supported for OCSP requests.

> The nonce feature of OCSP prevents replay attacks, but at the same time thwarts
caching and therefore reduces performance. Depending on the configuration of the
OCSP responder you may have to use the nonce option. If you get a message similar
to the following the OCSP responder doesn’t support the nonce feature. In this situa-
tion you can supply the signature option nonce=false to disable the nonce feature:

OCSP response from URL 'http://ocsp.acme.com' for certificate 'CN = PDFlib GmbH...'

does not contain nonce although it was requested

The Microsoft OCSP responder will reject the request with an unauthorized error if it
is not configured for nonce processing, but a nonce is requested. In this case you
must also supply the signature option nonce=false to disable the nonce feature.

> The hash suboption of the ocsp option can be used to select a hash function which is
used in the OCSP request and response to identify the certificate. However,
Acrobat XI/DC can only deal with OCSP responses which use the SHA-1 hash func-
tion, and cannot use OCSP responses with other hash functions for signature valida-
tion. For this reason other values than sha1 require the signature option
conformance=extended.

114 Chapter 7: Digital Signatures with PLOP DS

Revocation checking for the OCSP responder. The OCSP responder’s signing certificate
must be valid at the time of creating the OCSP response. In order to avoid a recursive
problem (the OCSP responder’s certificate would require another OCSP response) it is
recommended to include the id-pkix-ocsp-nocheck extension according to RFC 2560 in
the OCSP responder’s certificate. This is true for almost all commercial OCSP respond-
ers. Alternatively, this certificate may contain the CRL distribution points (CRLdp) exten-
sion.

OCSP option list examples. In the examples below only the part of the option list
which is relevant for OCSP response embedding is shown. Other signature options must
be added as appropriate.

Try OCSP response embedding with the URL present in the signer’s digital ID and fail
with an error if no AIA extension with the ocsp access method is available in the digital
ID:

ocsp={source={}}

or equivalently

ocsp={}

Request OCSP response embedding using the AIA extension if possible, but silently ig-
nore any error:

ocsp={source={} critical=false}

or equivalently

ocsp={critical=false}

Don’t embed an OCSP response even if the AIA extension is present in the digital ID:

ocsp=none

Explicitly provide the URL and a timeout of one second for the OCSP responder, overrid-
ing an entry in the AIA extension which may be present in the digital ID:

ocsp={source={url={http://ocsp.acme.com/} timeout=1000} }

Ensure that unsuccessful OCSP attempts prevent the signing process and disable the
nonce feature for OCSP responders which don’t support it:

ocsp={critical nonce=false}

7.4.2 Certificate Revocation Lists (CRLs)
Note CRL embedding is not supported for engine=mscapi.

CRL overview. When CRLs according to RFC 3280 and its successor RFC 5280 are used,
the CA periodically (e.g. once per day) creates a signed list of certificates which haven’t
yet expired but have been revoked. This list is made available to the signature software
and embedded in the signature. The list can be retrieved via the network or can be
stored locally. CRLs have a specific lifetime (e.g. one day) and must be refreshed before
the end of their lifetime. Since CRLs may cover any number of revoked certificates they

7.4 Certificate Revocation Information 115

are typically much larger than OCSP responses (up to several megabytes), and their size
is not known in advance. Since the full CRL is embedded in the PDF output this kind of
revocation information bloats the signed PDF documents. PLOP DS can obtain CRLs
from several sources:

> A certificate may contain an extension called CRL distribution points (CRLdp). This is al-
ways the case for AATL certificates (see »Adobe Approved Trust List (AATL)«, page 90).
This extension contains one or more network URLs of CRL resources. PLOP DS tries all
entries in the CRLdp extension until it can retrieve a CRL. If a usable CRL was found it
is embedded in the signature or a Document Security Store (DSS) (see Section 7.3.3,
»Document Security Store (DSS)«, page 107). The CRLdp extension is evaluated for
each certificate for which is CRL is required, depending on the availability of an OCSP
response and the respective critical options.

> As an alternative to the CRLdp extension, retrieval of a CRL for the signing certificate
can be configured with the crl option. The suboption source points to a network ad-
dress where a CRL is retrieved dynamically; the suboption filename points to a static
local CRL file in DER encoding.

> One or more local CRL files for the signing certificate and all other involved certifi-
cates can be supplied in PEM encoding with the crldir/crlfile signature options.

If the signer’s certificate is included in the CRL it has been revoked by the issuing CA, i.e.
it can no longer be used to create a valid signature. In this case prepare_signature() fails
with an error message similar to the following:

Certificate verification failure for certificate with subject 'C = DE, L = Munich, O =
PDFlib GmbH, CN = PLOP Demo Signer RSA-2048': certificate revoked

PLOP DS uses CRLs until they expire. Only when a particular CRL can no longer be used
because its lifetime has ended PLOP DS downloads a new CRL from the server.

Fig. 7.8
CRL information displayed in Acrobat

116 Chapter 7: Digital Signatures with PLOP DS

CRL option list examples. In the examples below only the part of the option list which
is relevant for CRL embedding is shown. Other signature options must be added as ap-
propriate.

Try CRL embedding with the URL present in the signer’s digital ID and fail with an er-
ror if no CRLdp extension is available in the digital ID:

crl={source={}}

or equivalently

crl={}

Request CRL embedding using the CRLdp extension if possible, but silently ignore errors:

crl={source={} critical=false}

or equivalently

crl={critical=false}

Don’t try to retrieve a CRL for the signing certificate or any other certificate even if the
CRLdp extension is present in the digital ID. This makes sense if online retrieval is
doomed to fail anyway, e.g. because the signing computer is offline:

crl=none

Explicitly provide the URL and a timeout of one second for the CRL server, overriding an
entry in the CRLdp extension which may be present in the digital ID:

crl={source={url={http://crl.acme.com/} timeout=1000} }

Provide a CRL contained in a local disk file:

crlfile={certs.pem}

7.4.3 OCSP or CRL?
The following factors are relevant for selecting the most suitable method of including
revocation information:

> OCSP provides real-time certificate status information. Since an OCSP response cov-
ers only a single certificate it has a predictable size of only a few kilobytes. On the
other hand, OCSP always requires a network connection to the OCSP responder.

> The advantage of CRLs over OCSP is that they can be stored locally and therefore net-
work overhead can be avoided. The disadvantage is that a locally stored CRL may be-
come stale unless it is renewed frequently (i.e. published and downloaded).

> Since CA certificates rarely need to be revoked, CRLs for CAs are typically much
smaller than CRLs for end-user certificates.

> Similarly, since HSMs are rarely broken or stolen, CRLs for an HSM-based certificate
are often usually very small (provided the CRL covers only HSM-based certificates
and no file-based certificates).

> Some legislations or private signature policies may require or prohibit one of both
methods.

7.4 Certificate Revocation Information 117

By default, PLOP DS only embeds a CRL in the signature if no valid good OCSP response
is available, but this behavior can be modified with the ocsp and crl options and the
critical suboption.

Use the following option list to ensure that revocation information is always embed-
ded, where a CRL will only be retrieved if OCSP doesn’t provide a good response:

ocsp={critical=false source={url={http://ocsp.acme.com/}}}
crl={critical=true source={url={ http://crl.acme.com/}}}

Keep in mind that the ocsp and crl options control only revocation information embed-
ding for the signing certificate, but not for any CA or TSA certificates which may be in-
volved.

118 Chapter 7: Digital Signatures with PLOP DS

7.5 Timestamps
7.5.1 Timestamp Configuration

A digital signature may include date and time information obtained from a trusted
time server, also called Timestamp Authority (TSA). Unlike the time taken from the
signing computer (which can easily be manipulated), a timestamp obtained from a
trusted server provides a signed and reliable source for the time of signature. PLOP DS
supports timestamping according to RFC 3161, RFC 5816, and ETSI EN 319 422. Since the
timestamping request includes a hash of the generated signature, the timestamp con-
firms that the signature has been created at a particular time. The timestamp is embed-
ded in the generated PDF signature.

PLOP DS validates each timestamp before embedding it in the generated document.
An error is raised if a requested timestamp cannot be validated e.g. the required creden-
tials have not been configured. The user is responsible for selecting and configuring a
suitable TSA, e.g one which creates qualified timestamps.

Depending on the selected TSA you must consider the following configuration is-
sues for creating timestamps:

> The most important information is the network address where the TSA can be
reached. It can be supplied with the url suboption of the source suboption. Alterna-
tively it can be taken from the signer’s digital ID (see »Timestamp extension in digi-
tal ID«, page 119).

> In order to trust the TSA the CA which issued the TSA certificate must be trusted. The
TSA’s CA certificate must be handled the same way as other CA certificates when val-
idating a signature; see »Configuring trust root certificate(s) for all chains«, page 125,
for details. This is especially important for creating LTV-enabled signatures. If you
work with a TSA under one of the AATL hierarchies (see »Adobe Approved Trust List
(AATL)«, page 90) the issuer or chain of issuers of the TSA certificate is known to
Acrobat as a trusted root. However, it may be necessary to supply the TSA CA certifi-
cate to PLOP DS in the certfile option.

> The TSA may require the client to use a particular hash algorithm for creating the
timestamp request. By default, PLOP DS uses the SHA-256 algorithm which works
with all modern TSAs. Another hash function can be supplied with the hash subop-
tion. Note that the hash algorithm used in the timestamp signature cannot be speci-
fied since it is completely under control of the TSA.

> While some TSAs are freely accessible, commercial TSAs may require user name and
password to restrict access. Unauthorized access results in a message similar to the
following:

Network response from URL 'https://timestamp.acme.com/tsa' has bad status code 401
('Unauthorized')

Authentication parameters can be supplied as part of the URL or with the suboptions
username/password of the source network suboption.

> If the TSA requires SSL access (i.e. https) the server’s SSL root certificate must be sup-
plied with the sslcertdir/sslcertfile options. Otherwise you will run into a message sim-
ilar to the following:

Document timestamp request to 'https://timestamp.acme.com/tsa' failed
('Peer certificate cannot be authenticated with given CA certificates')

7.5 Timestamps 119

As an alternative to providing the required server certificate you can skip the server
certificate check with the option sslverifypeer=false, provided you are aware of the se-
curity implications.

> Some TSAs require an explicit policy OID (object identifier) which can be supplied
with the policy suboption. The applicable value of the OID must be arranged with the
TSA. The policy OID is displayed in Acrobat’s Signature Properties dialog, Advanced
Properties... .

7.5.2 Timestamped Signatures
Note Timestamped signatures are not supported for engine=mscapi.

Approval and certification signatures may optionally contain an embedded timestamp.
Timestamped signatures are supported in Acrobat 7 and above.

Timestamp extension in digital ID. A digital ID may contain the TimeStamp extension
which contains the URL of a timestamp authority to facilitate signing with embedded
timestamps without the need for supplying TSA details. The TimeStamp extension is
usually included in certificates issued by AATL (Adobe Approved Trust List) providers (see
»Adobe Approved Trust List (AATL)«, page 90). Some AATL providers offer a limited
number of timestamps for free.

If the TimeStamp extension is present and contains a URL which does not require au-
thentication, PLOP DS attempts to access the specified TSA for creating a timestamp. In
this situation it is not necessary to supply the url suboption for creating a timestamp. In
order to use a TSA which requires authentication, however, you must specify the full
TSA details explicitly in an option list (see examples below), even if the TSA is specified
in the TimeStamp extension.

Timestamping option list examples. In the examples below only the part of the option
list which is relevant for including a timestamp is shown. Other signature options must
be added as appropriate.

Fig. 7.9
Timestamped signature
in Acrobat

120 Chapter 7: Digital Signatures with PLOP DS

Stamp the signature with a timestamp obtained from the TSA at the specified URL using
the default hash algorithm SHA-256:

timestamp={source={url={http://timestamp.acme.com/tsa}}}

Stamp the signature with a timestamp where the TSA requires user name and password
to obtain a timestamp:

timestamp={source={url={http://timestamp.acme.com/tsa} username=demo password=demo}}

Stamp the signature with a timestamp where the TSA requires digest authentication:

timestamp={source={url={http://timestamp.acme.com/tsa} httpauthentication=digest
username=demo password=demo }}

If the TSA must be accessed via SSL you must supply the server’s SSL certificate with the
options sslcertdir/sslcertfile. If the server’s SSL certificate is not available you can skip
server authentication with the sslverifypeer option, provided you are aware of the securi-
ty implications of doing so:

timestamp={source={url={https://timestamp.acme.com/tsa}} sslverifypeer=false}

Attempt to embed a timestamp in the signature with the URL present in the signer’s
digital ID and fail with an error if no TimeStamp extension is available in the digital ID:

timestamp={source={}}

or equivalently

timestamp={}

Don’t embed a timestamp even if the TimeStamp extension is present in the digital ID:

timestamp=none

7.5.3 Document-Level Timestamp Signatures
Document-level timestamps have been introduced with PAdES part 4 and are included
in ISO 32000-2.

Timestamped signature vs. document-level timestamp. Similar to a timestamped sig-
nature a document-level timestamp provides status information related to a particular
point in time. However, in the first case the timestamp is an attribute of the main signa-
ture, while a document-level timestamp is a valid signature of its own. It does not re-
quire any digital ID since no signing person or entity is involved. Instead, document-
level timestamps are created via a network request to a Timestamp Authority (TSA).
Document-level timestamps ensures that a particular document has been in existence
at the time designated in the timestamp.

Note Document-level timestamp signatures are not supported for engine=mscapi.

Document-level timestampings option list examples. In the examples below the full
signature option list for creating a document timestamp is shown. Since no signing cer-
tificate is required no other signature options are required.

7.5 Timestamps 121

Add a document-level timestamp obtained from the TSA at the specified URL using the
default hash algorithm SHA-256:

doctimestamp={source={url={http://timestamp.acme.com/tsa}}}

Add a document-level timestamp from a TSA which requires user name and password:

doctimestamp={source={url={http://timestamp.acme.com/tsa}} username=demo password=demo}

Add a document-level timestamp from a TSA which requires digest authentication:

doctimestamp={source={url={http://timestamp.acme.com/tsa} httpauthentication=digest
username=demo password=demo}}

pCOS. Document-level timestamp signatures are reported in pCOS as signature-
fields[...]/sigtype=doctimestamp.

7.5.4 Troubleshooting and Unsupported TSA Types

Oversized timestamp responses. PLOP DS must know the size of a timestamp in ad-
vance. It uses a built-in value for the maximum size of the timestamp response received
from the TSA. If the timestamp response exceeds this maximum the following error oc-
curs:

Not enough space reserved for signature contents (reserved XXX bytes, need YYY bytes)

In this case you can increase the maximum value with the signature option timestamp-
size. The internal default value of timestampsize is documented in Table 8.7, page 153.

Fig. 7.10
Document-level time-
stamp in Acrobat

122 Chapter 7: Digital Signatures with PLOP DS

In the situations described below a TSA cannot be used for signing PDF documents with
PLOP DS.

Attribute certificates. Attribute certificates are not supported in PLOP DS. If a TSA uses
them PLOP DS issues the following error message:

Timestamp authority 'http://adobe-tsa.entrust.net/TSS/HttpTspServer'
uses unsupported protocol ('wrong tag')

A particular application of attribute certificates is for a TSA’s Time Auditing Certificate
(TAC). Some TSA products use the new CMS syntax according to RFC 2630 for encoding
the TAC which is not supported in PLOP DS. However, they can be configured to encode
the TAC with alternative methods such as putting the TAC in a signed attribute accord-
ing to RFC 3126.

Missing »critical« flag in key usage extension. The timestamping protocol RFC 3161 re-
quires that the TSA certificate includes the Extended Key Usage extension with the value
timestamping, where this extension must be marked as critical. If this extension is pres-
ent in the TSA certificate, but not marked as critical, Acrobat rejects the signature as in-
valid.

PLOP DS rejects timestamps produced with such a TSA certificate with the following
error message:

Signature verification of timestamp failed: certificate verify error:
Verify error:unsupported certificate purpose

Trying to use a TSA certificate which doesn’t have the »critical« flag set for the Extended
Key Usage field to create a document timestamp with Acrobat results in the following er-
ror message:

Error encountered while signing:
Certificate is not valid for the usage

Using such a TSA to create a certification or approval signature with an embedded time-
stamp with Acrobat succeeds, but upon validation the timestamp in the resulting signa-
ture is rejected with the following message:

The signature includes an embedded timestamp but it is invalid

Authenticode Timestamp servers. Authenticode is a Microsoft timestamping protocol
which had its main use for code-signing. Since Authenticode is based on the older
RFC 2985/PKCS#9 instead of RFC 3161 it is not supported in PDF and PLOP DS.

PLOP DS rejects timestamps produced with an Authenticode TSA with an error mes-
sage similar to the following:

Unexpected content type 'text/html;charset=ISO-8859-1' in reply to timestamp request to
URL 'http://timestamp.entrust.net/TSS/AuthenticodeTS'
(expected content type 'application/timestamp-reply')

or

Unexpected content type 'application/timestamp-query' in reply to timestamp request to
URL 'http://timestamp.verisign.com/scripts/timstamp.dll'
(expected content type 'application/timestamp-reply')

7.5 Timestamps 123

Trying to use an Authenticode TSA with Acrobat results in the following error message:

Error encountered while signing:
Error encountered while BER decoding

124 Chapter 7: Digital Signatures with PLOP DS

7.6 Long-Term Validation (LTV)
7.6.1 LTV Concept and Acrobat Support

Long-Term Validation (LTV) means that a signature can still be validated once the sign-
ing certificate has expired or has been revoked, which is an important aspect for ar-
chiving signed documents over long periods of time. The LTV concept is discussed in
PAdES Part 4 (ETSI TS 102 778-4) and supported in Acrobat XI/DC. LTV signatures con-
form to the requirements of the eIDAS regulation.

In order to LTV-enable a signature the full certificate chain and revocation informa-
tion for all involved certificates, collectively called validation information, must be em-
bedded in the signature or in a DSS (see Section 7.3.3, »Document Security Store (DSS)«,
page 107). Since more signature-related data must be embedded for LTV, the signed doc-
uments are typically larger than non-LTV-enabled signatures.

Note LTV-enabled signatures are not supported for engine=mscapi.

LTV-enabled signatures should include an embedded timestamp, but this is not a strict
requirement. You can extend the lifetime of an LTV-enabled signature by adding a doc-
ument-level timestamp signature before any of the involved certificates expires or is
revoked.

LTV status is not defined in absolute terms, but relative to a set of trusted root certif-
icates. Depending on configuration, a particular signature may be regarded as LTV-en-
abled in one configuration, but not LTV-enabled in another one. For example, if you
configure different trusted roots in PLOP DS and in Acrobat the LTV status may be dif-
ferent.

LTV status in Acrobat. Acrobat XI/DC displays the status line »Signature is LTV en-
abled« or »Signature is not LTV enabled and will expire after...« in the Signatures pane
(see Figure 7.11). Keep the following in mind related to the LTV status line:

Fig. 7.11
LTV-enabled signature in
Acrobat

7.6 Long-Term Validation (LTV) 125

> The root certificate(s) for all involved certificates must be configured as trusted in
Acrobat (see »Trusted Root Certificates in Acrobat«, page 90).

> Any valid signature can be forced to display as LTV-enabled in Acrobat by adding the
immediate signing CA certificates to the trusted root store. This may cause confu-
sion regarding the LTV status if the configuration is not taken into account. It also
implies that signatures created with a self-signed certificate are treated as LTV-en-
abled if the certificate is added to the trusted root certificates.

> Acrobat XI/DC does not insist on an embedded timestamp to achieve LTV status. If a
timestamp is embedded, Acrobat does not require validation information for the
TSA certificate. PLOP DS is stricter and also requires full validation information for
the TSA certificate. Acrobat doesn’t use an embedded OCSP response for the TSA cer-
tificate unless it has been created only a few minutes before validation time.

> Acrobat XI/DC supports only the SHA-1 hash function for OCSP responses (see »OCSP
configuration«, page 113). As a result, Acrobat may not display the LTV status correct-
ly if another hash function is used although full validation information is actually
available.

> The following setting must not be activated in Acrobat since otherwise the LTV sta-
tus is not shown: Preferences, Signatures, Verification, More..., Verification Time, Verify
Signatures Using: Current time.

> The LTV status may get lost by reverting to an earlier revision; see »Reverting to ear-
lier revisions of a signed document«, page 108, for details.

7.6.2 LTV-enabled Signatures with PLOP DS
If the following option is supplied, PLOP DS creates an LTV-enabled signature provided
all validation information can be obtained. Otherwise an error is issued and no signa-
ture is created:

ltv=full

This option alone does not ensure LTV-enabled signatures, but only checks that all re-
quirements are met. If a certificate is missing or validation information could not be ob-
tained, PLOP DS issues an error message. It it therefore important to thoroughly analyze
all error messages.

The default setting ltv=try means that all available revocation information is embed-
ded in the signed document, but the signature call does not fail if the validation infor-
mation is not sufficient for achieving LTV status.

Configuring trust root certificate(s) for all chains. In order to fully validate all invol-
ved certificates PLOP DS needs trust anchors for all certificates. The exact number de-
pends on the PKI configuration. Trusted root certificates must be supplied with the
rootcertdir or rootcertfile option. This involves at least the certificate of the root CA at the
top of the chain for the signing certificate. Other root certificates, e.g. for the TSA, may
be required unless a single root CA is at the top of all involved certificate chains.

Configuring intermediate CA certificate(s). The remaining certificate chain (i.e. all in-
termediate CAs between the root and the signing certificate or other involved certifi-
cates) must be available so that PLOP DS can embed it in the signature. CA certificates
for the signing certificate as well as other involved certificates such as an OCSP respond-
er certificate or TSA certificate are searched in the following locations:

126 Chapter 7: Digital Signatures with PLOP DS

> CA certificates can be supplied with the certfile option.
> (Not for engine=mscapi) CA certificates for the signing certificate can be included in

the PKCS#12 file which contains the signer’s digital ID.
> (Only for engine=mscapi) CA certificates are searched in the Windows certificate

store.
> A certificate may contain the Authority Info Access (AIA) extension with the caIssuers

(Certification Authority Issuer) access method according to RFC 3280. This extension
contains one or more URLs where the certificate of the CA which issued the signing
certificate and possibly intermediate CA certificates can be downloaded. The proto-
cols http, https, and ftp are supported.

A certificate may specify the LDAP protocol in the AIA extension which is not currently
supported in PLOP DS. In this situation you can use an LDAP browser1 to retrieve the CA
certificate manually via LDAP and supply it to the options mentioned above. This must
be done only once for a signing certificate.

Which CA certificates do I have to configure? The detailed requirements for achieving
LTV status depend on the PKI configuration. In many cases the following steps are suffi-
cient:

> Certificates issued by many commercial CAs include the AIA extension with the
caIssuers access method. This means that PLOP DS can automatically download the
chain of CA certificates for the signing certificate. Only the root CA certificate must
be supplied with the rootcertdir or rootcertfile option.
If the AIA extension with the caIssuers access method is not present in the signing
certificate you can usually download the required root certificate(s) from the CA’s
Web site.

> Certificates of TSAs and OCSP responders are retrieved automatically. If these certifi-
cates or any intermediate certificates have been issued by another root CA than the
signing certificate, the root certificate must be supplied with the rootcertdir or root-
certfile option.

> CRLs are often signed by the same CA which issued the certificate that is being que-
ried. However, if the CRL has been signed by another CA the corresponding CA certif-
icate must be supplied with the certfile option since it cannot be downloaded auto-
matically. If the certificate used for signing a CRL has been issued by another root CA
than the signing certificate (e.g. the CRL for a TSA which is based in another PKI), the
root certificate must be supplied with the rootcertdir or rootcertfile options.

With validate=full or ltv=full PLOP DS emits an error »unable to get local issuer certificate«
if a required CA certificate is missing. In this case you must supply the missing certifi-
cate in one of the options rootcertdir, rootcertfile, or certfile. The following message:

Certificate verification failure for certificate with subject '...':
self signed certificate in certificate chain

typically occurs if you supplied a trusted self-signed certificate in the certfile option in-
stead of the rootcertfile or rootcertdir option.

1. For example the free Softerra LDAP Browser which is available from www.ldapbrowser.com/

http://www.ldapbrowser.com/

7.6 Long-Term Validation (LTV) 127

Revocation information for the signing certificate. Revocation information for the
signing certificate must be supplied by one of the following means:

> OCSP via the AIA extension in the signer’s certificate or the ocsp option.
> CRL via the CRLdp extension in the signer’s certificate or the crl option. Existing CRLs

can be supplied with the crldir and crlfile options.

The critical suboption of the ocsp and crl options can be used to make sure that a signa-
ture is only created if OCSP or CRL information for the signing certificate could be ob-
tained successfully. See Section 7.4, »Certificate Revocation Information«, page 112, for
details.

Revocation information for other involved certificates. Revocation information for
the certificates of all CAs in the certificate chain as well as for the certificates of all CAs
used for signing CRLs and OCSP responses must also be available, with the following ex-
ceptions which don’t require revocation information:

> root CA certificates supplied to the rootcertdir or rootcertfile options;
> an OCSP responder’s certificate if it includes the id-pkix-ocsp-nocheck extension

(which is commonly the case).

Revocation information for certificates other than the signing certificate can be provid-
ed by one of the following means:

> OCSP via the AIA extension in the certificate.
> CRL via the CRLdp extension in the certificate. Existing CRLs can be supplied with the

crldir and crlfile options.

LTV option list examples. For the first example let’s assume that the PKI is set up as
follows:

> the signer’s digital ID contains the chain of CA certificates in the PKCS#12 file, or each
certificate except the root certificate contains an AIA extension with caIssuers access
method;

> the signer’s digital ID and all CA certificates in the chain except the root certificate
contain an AIA extension with the ocsp access method or CRLdp extension;

> the OCSP responder’s certificate contains the id-pkix-ocsp-nocheck extension.

In this situation only the rootcertfile option is required (in addition to options for the
digital ID) to achieve LTV status. The option ltv=full can be used to ensure that violations
of LTV requirements are detected and no signature is created if LTV status cannot be
achieved:

digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt ltv=full
rootcertfile=root1.pem

In order to embed a timestamp, revocation information for the TSA certificate must
also be available to achieve LTV status. Ideally, the TSA certificate also contains the AIA
extension with ocsp access method or CRLdp extension and is rooted in the same CA as
the signing certificate. In this case no more specific options are required to achieve LTV
status:

digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt ltv=full
rootcertfile=root1.pem timestamp={source={url={http://timestamp.acme.com/tsa}}}

128 Chapter 7: Digital Signatures with PLOP DS

However, if the TSA is based on a different root CA you must also supply the TSA root in
the rootcertfile option (the file root1+2.pem is assumed to contain both required root cer-
tificates in PEM encoding):

digitalid={filename=demo_signer_rsa_2048.p12} passwordfile=pw.txt ltv=full
rootcertfile=root1+2.pem timestamp={source={url={http://timestamp.acme.com/tsa}}}

7.7 The CAdES and PAdES Signature Standards 129

7.7 The CAdES and PAdES Signature Standards
7.7.1 CMS and CAdES Signatures

The European Telecommunications Standards Institute (ETSI)1 issued a number of digi-
tal signature standards to harmonize digital signatures among EU member countries.
ETSI standards are quite influential also in other parts of the world. They are referenced
in the PDF 2.0 standard ISO 32000-2 and have been incorporated in various RFCs.

CMS and CAdES signatures. For a long time PDF signatures were based on CMS (Cryp-
tographic Message Syntax). It is specified in RFC 5652 and widely used in Internet proto-
cols. CMS signatures in PDF use the subfilter adbe.pkcs7.detached or some older deprecat-
ed entry in the signature dictionary. CMS signatures can be created and validated with
all Acrobat versions.

CAdES (CMS Advanced Electronic Signatures) is specified in ETSI TS 101 733 (technically
equivalent to RFC 5126) and adds some features to CMS. Most importantly, it protects
against a threat scenario called certificate substitution by including a reference to the
signing certificate in the signature (using the signing-certificate-v2 attribute). CAdES sig-
natures in PDF require the ETSI.CAdES.detached subfilter in the signature dictionary.

pCOS. CAdES signatures are reported in pCOS as signaturefields[...]/cades=true.

PAdES signatures. PAdES (PDF Advanced Electronic Signatures) is specified in ETSI
TS 102 778. It applies CAdES to PDF by adding options and constraints to PDF signatures
as defined in PDF 1.7 (ISO 32000-1). PAdES also specifies additional PDF data structures
which are included in PDF 2.0 (ISO 32000-2). PAdES consists of several parts (those parts
which are not relevant here are omitted).

> PAdES Part 2 is specified in ETSI TS 102 778-2 PAdES Basic. It is based on CMS and con-
forms to ISO 32000-1 while forbidding some of its optional features to strengthen
the signatures. For example, PAdES-Basic requires the ByteRange to cover the whole
document in order to close a security gap in the original ISO 32000-1 definition.

> PAdES Part 3 is specified in ETSI TS 102 778-3 PAdES Enhanced. It is based on CAdES
and defines the two profiles BES (Basic Electronic Signature) and EPES (Explicit Policy-
based Electronic Signature). EPES extends BES by adding a policy identifier and an
optional commitment type indication to the signature. The policy attribute specifies
the signature policy under which the signature is created. The commitment-type attri-
bute can be used as an alternative to the Reason entry in the signature dictionary.
CAdES defines a series of generic commitment types such as proof of origin, proof of
receipt, or proof of approval.

> PAdES Part 4 is specified in ETSI TS 102 778-4 PAdES Long-Term and provides the
means for long-term validation, discussed in more detail in Section 7.6, »Long-Term
Validation (LTV)«, page 124. Part 4 introduces document-level timestamps and the
DSS (see Section 7.3.3, »Document Security Store (DSS)«, page 107). The concepts de-
fined in PAdES part 4 can be applied to PAdES part 2 and part 3 signatures, i.e. PAdES-
LTV can be based on CMS or CAdES.

1. ETSI standards are freely available from www.etsi.org/standards

http://www.etsi.org/standards

130 Chapter 7: Digital Signatures with PLOP DS

PAdES signature levels. Several levels of PAdES signatures have been defined which
are intended to cover the life cycle of a signature. The following PAdES basic signature
levels are defined in ETSI EN 319 142-1:

> Basic Signature: PAdES Level B-B is the building block of PAdES signatures. It sup-
ports signatures with or without signature policy identifier, i.e. EPES and BES. This
level can be considered a profile for short-term signatures.

> Signature with Time: PAdES Level B-T adds a signature timestamp to PAdES Level B-B
to prove that the signature existed at a certain date and time.

> Signature with Long-Term Validation Material: PAdES Level B-LT adds validation
data to PAdES Level B-T to ensure long-term availability of the validation material.
Since all certificates of the certificate chain as well as OCSP responses or CRLs are
available the signature can be validated even after a long time, e.g. when the CA is no
longer available.

> Signature providing Long Term Availability and Integrity of Validation Material:
PAdES Level B-LTA adds a document-level (archive) timestamp and associated valida-
tion data to PAdES Level B-LT to ensure long-term availability and integrity of the
validation material. Timestamps can be added repeatedly as required, e.g. when
cryptographic algorithms or key lengths are no longer considered strong enough.
LTA signatures conform to the requirements of the eIDAS regulation.

ETSI EN 319 142-2 »Part 2: Extended PAdES signatures« defines extended signature pro-
files:

> PAdES Level E-BES specifies the basic requirements for digital signatures in PDF.
> PAdES Level E-EPES is built on PAdES E-BES. It adds a signature policy identifier and

an optional commitment type indication.
> PAdES Level E-LTV builds on either E-BES or E-EPES. It adds a Document Security

Store (DSS) and document timestamps. This can be used to augment an existing sig-
nature. to maintain the long-term validity of the signature

CAdES and PAdES support in Acrobat. By default Acrobat signatures conform to PAdES
part 2 (PAdES-Basic). Acrobat XI/DC can create PAdES part 3 BES signatures if configured
for CAdES as follows: Edit, Preferences, Signatures, Creation & Appearance, More..., Default
Signing Format: CAdES-Equivalent

Since there is no support for policy identifiers, PAdES E-EPES cannot be created with
Acrobat. However, both E-BES and E-EPES can be validated with Acrobat.
PAdES part 4 is supported in Acrobat XI/DC with the following features:

Fig. 7.12
PAdES status in Acrobat DC

7.7 The CAdES and PAdES Signature Standards 131

> Long-Term Validation status information, see »LTV status in Acrobat«, page 124, for
details;

> LTV-enabling a signature by opening the Signatures pane and clicking Add Verification
Information in the Options menu.

> document-level timestamps.

Starting with the October 2016 release of Acrobat DC (more precisely: Acrobat DC Classic
2015.006.30243 and Acrobat DC Continuous 2015.020.20039) you can view the PAdES
signature level by right-clicking on a signature and selecting Show Signature Properties...,
Advanced Properties...(see Figure 7.12).

132 Chapter 7: Digital Signatures with PLOP DS

7.7.2 PAdES Signatures with PLOP DS
PLOP DS supports all PAdES signature levels mentioned above for author and approval
signatures. The signature type CMS or CAdES can be selected with the sigtype option;
features for PAdES signature levels are activated by additional options. By default,
PLOP DS creates CAdES signatures which conform to PAdES Level B-B. Table 7.7 lists the
options required to achieve the PAdES signature levels with PLOP DS.

Note PAdES part 3 and part 4 are not supported for engine=mscapi.

PAdES option list examples. The following signature option (in addition to other rele-
vant options such as digitalid) creates a signature according to PAdES E-BES (since this is
the default setting it can also be omitted):

sigtype=cades

The following partial signature option list creates a signature according to PAdES E-EPES
(using a fictitious signature policy identifier):

policy={oid=2.16.276.1.89.1.1.1.1.3 commitmenttype=origin}

The following partial signature option list creates a signature according to PAdES Level
B-T:

timestamp={critical source={url={http://timestamp.acme.com/tsa}}}

The following partial signature option list creates a signature according to PAdES Level
B-LT:

timestamp={critical source={url={http://timestamp.acme.com/tsa}}} ltv=full

The following partial signature option list creates a timestamped signature with an ad-
ditional archival timestamp according to PAdES Level B-LTA:

Table 7.7 PAdES signature levels according to ETSI EN 319 142-1

PAdES signature level PLOP DS options

PAdES Level B-B, includes
E-BES (Basic Electronic Signature) and
E-EPES (Explicit Policy Electronic Signature)

PAdES E-BES: sigtype=cades (default)
PAdES E-EPES: like PAdES E-BES plus policy

PAdES Level B-T (Trusted time for signature existence) like PAdES Level B-B plus
timestamp with critical=true

PAdES Level B-LT (Long Term) like PAdES Level B-T plus
ltv=full rootcertfile/rootcertdir1

1. Additional options may be required to achieve LTV status, such as certfile, ocsp, crl; see Section 7.6.2, »LTV-enabled Sig-
natures with PLOP DS«, page 125.

PAdES Level B-LTA (Long Term with Archive timestamps)
(Required for qualified eIDAS signatures)

like PAdES Level B-LT plus
doctimestamp

PAdES Level E-LTV (Long Term Validation) like PAdES Level B-LTA plus
dss=true, applied to a document with an
existing signature

7.7 The CAdES and PAdES Signature Standards 133

ltv=full timestamp={critical source={url={http://timestamp.acme.com/tsa}}}
doctimestamp={source={url={http://timestamp.acme.com/tsa}}}

The following partial signature option list can be used to augment an existing PAdES
Level B-LT signature with an additional archival timestamp according to PAdES Level B-
LTA:

ltv=full doctimestamp={source={url={http://timestamp.acme.com/tsa}}}

134 Chapter 7: Digital Signatures with PLOP DS

8.1 Option Lists 135

8 PLOP and PLOP DS Library API
Reference

8.1 Option Lists
Option lists are a powerful yet easy method to control PLOP operations. Instead of re-
quiring a multitude of function parameters, many API methods support option lists, or
optlists for short. These are strings which may contain an arbitrary number of options.
Optlists support various data types and composite data like arrays. In most languages
optlists can easily be constructed by concatenating the required keywords and values. C
programmers may want to use the sprintf() function in order to construct optlists. An
optlist is a string containing one or more pairs of the form

name value(s)

Names and values, as well as multiple name/value pairs can be separated by arbitrary
whitespace characters (space, tab, carriage return, newline). The value may consist of a
list of multiple values. You can also use an equal sign ’=’ between name and value:

name=value

Simple values. Simple values may use any of the following data types:
> Boolean: true or false; if the value of a boolean option is omitted, the value true is as-

sumed. As a shorthand notation noname can be used instead of name=false.
> String: strings containing whitespace or ’=’ characters must be bracketed with { and }.

An empty string can be constructed with { }. The characters {, }, and \ must be preced-
ed by an additional \ character if they are supposed to be part of the string.

> Text strings are a special kind of string for certain options. While most options of
type string accept only ASCII values, text strings may also carry Unicode values be-
yond ASCII. In Unicode-capable language bindings (see »Unicode support in lan-
guage bindings«, page 136) you can simply supply arbitrary Unicode values for such
options. In non-Unicode-capable language bindings the user must prepend a UTF-8
BOM to text strings if the string is to be interpreted as UTF-8. If no UTF-8 BOM is
present, text strings will be interpreted in auto encoding, i.e. the current code page
on Windows, ebcdic on zSeries, and iso8859-1 on Unix and macOS.

> Keyword: one of a predefined list of fixed keywords
> Float and integer: decimal floating point or integer numbers; point and comma can

be used as decimal separators.
> Handle: several internal object handles, e.g., document or page handles. Technically

these are integer values.

Depending on the type and interpretation of an option additional restrictions may ap-
ply. For example, integer or float options may be restricted to a certain range of values;
handles must be valid for the corresponding type of object, etc. Conditions for options
are documented in their respective function descriptions. Some examples for simple
values (the first line shows a string containing a blank character):

136 Chapter 8: PLOP and PLOP DS Library API Reference

password={secret string}
linearize=true

List values. List values consist of multiple values, which may be simple values or list
values in turn. Lists are bracketed with { and }. Example for a list value:

permissions={ noprint nocopy }

Note The backslash \ character requires special handling in many programming languages

Unquoted string values. In the following situations the actual characters in an option
value may conflict with optlist syntax characters:

> Passwords or file names may contain unbalanced braces, backslashes and other spe-
cial characters

> Japanese SJIS filenames in option lists (reasonable only in non-Unicode-capable lan-
guage bindings)

In order to provide a simple mechanism for supplying arbitrary text or binary data
which does not interfere with option list syntax elements, unquoted option values can
be supplied along with a length specifier in the following syntax variants:

key[n]=value
key[n]={value}

The decimal number n represents the following:
> in Unicode-capable language bindings: the number of UTF-16 code units
> in non-Unicode aware language bindings: the number of bytes comprising the string

The braces around the string value are optional, but strongly recommended. They are
required for strings starting with a space or other separator character. Braces, separators
and backslashes within the string value are taken literally without any special interpre-
tation.

Example for specifying a 7-character password containing space and brace charac-
ters. The whole string is surrounded by braces which are not part of the option value:

password[7]={ ab}c d}

Rectangle. A rectangle is a list of four float values specifying the x and y coordinates of
the lower left and upper right corners of a rectangle. The coordinates are interpreted in
the default PDF coordinate system, i.e. origin in the lower left corner of the page and
point as unit. Example:

rect={ 100 100 200 150}

The adapt keyword can be used for automatic size calculation without distortion, see
Section 7.3.1, »Visualizing Signatures with a Graphic or Logo«, page 102.

Unicode support in language bindings. If a programming language or environment
supports Unicode strings natively we call the binding Unicode-capable. The following
language bindings are Unicode-capable:

> C++
> .NET
> Java

8.1 Option Lists 137

> Objective-C
> Python
> RPG

String handling in these environments is straightforward: all strings are supplied as
Unicode strings in native UTF-16 format. The language wrappers correctly deal with
Unicode strings provided by the client and automatically set certain options.

The following language bindings are not Unicode-capable by default:
> C (no native string data type available)
> Perl
> PHP
> Ruby

The use of UTF-8 is recommended for non-Unicode-capable language bindings. Some
aspects of the API differ between Unicode-capable and non-Unicode-capable language
bindings. Such differences are mentioned in the corresponding API descriptions in this
chapter.

The PLOP_convert_to_unicode() function can be used to convert between UTF-8,
UTF-16, and UTF-32 strings or from arbitrary encodings to Unicode with an optional
BOM.

138 Chapter 8: PLOP and PLOP DS Library API Reference

8.2 General Functions

C PLOP *PLOP_new(void)

Create a new PLOP context.

Returns A handle to the new context, or NULL if not enough memory is available. The context
must be supplied to all other API methods.

Bindings Not available in object-oriented language bindings where it will be called automatically
when a new PLOP object is created.

Java void delete()
C# void Dispose()

C void PLOP_delete(PLOP *plop)

Delete a PLOP context and release all its internal resources.

Details All open documents in the context are closed automatically. It is good programming
practice, however, to close documents explicitly with close_document() when they are
no longer needed.

Bindings In C this function must not be called within a PLOP_TRY()/PLOP_CATCH() clause.

In Java this method will be called by the finalizer method of PLOP. However, it is
strongly recommended to explicitly call delete() for reliable cleanup. The same holds
true when an exception occurred.

In Perl and PHP this function will be called automatically when the PLOP object is de-
stroyed.

In .NET Dispose() should be called at the end of processing to clean up unmanaged re-
sources.

C++ void create_pvf(wstring filename, const void *data, size_t size, wstring optlist)
C# Java void create_pvf(String filename, byte[] data, String optlist)

Perl PHP create_pvf(string filename, string data, string optlist)
C void PLOP_create_pvf(PLOP *plop,

const char *filename, int len, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename (Name string) The name of the virtual file. This is an arbitrary string which
can later be used to refer to the virtual file in other PLOP calls.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

data Data for the virtual file. In C and C++ this is a pointer to a memory location. In
Java this is a byte array. In Perl and PHP this is a string.

size (C and C++ only) The length in bytes of the memory block containing the data.

optlist An option list according to Table 8.1. The following option can be used: copy.

8.2 General Functions 139

Details This function may be useful for repeatedly used digital IDs or XMP metadata. The virtu-
al file name can be supplied to any API method which uses input files. Some of these
functions may set a lock on the virtual file until the data is no longer needed. Virtual
files will be kept in memory until they are deleted explicitly with delete_pvf(), or auto-
matically in delete().

Each PLOP object maintains its own set of PVF files. Virtual files cannot be shared
among different PLOP objects. Multiple threads working with separate PLOP objects do
not need to synchronize PVF use. If filename refers to an existing virtual file an excep-
tion will be thrown. This function does not check whether filename is already in use for a
regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to delete_pvf(). Not obeying to
this rule will most likely result in a crash.

C++ Java C# int delete_pvf(String filename)
Perl PHP int delete_pvf(string filename)

C int PLOP_delete_pvf(PLOP *plop, const char *filename, int len)

Delete a named virtual file and free its data structures.

filename (Name string) The name of the virtual file as supplied to create_pvf().

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

Returns -1 (in PHP: 0) if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, PLOP will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to create_pvf(): If the copy option has been supplied, both the
administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

Table 8.1 Option for create_pvf()

option description

copy (Boolean) If true, PLOP creates an internal copy of the supplied data. In this case the caller may dispose of
the supplied data immediately after this call. Default: false for C and C++, but true for all other lan-
guage bindings

140 Chapter 8: PLOP and PLOP DS Library API Reference

C++ Java C# double info_pvf(String filename, String keyword)
Perl PHP float info_pvf(string filename, string keyword)

C double PLOP_info_pvf(PDF *p, const char *filename, int len, const char *keyword)

Query properties of a virtual file or the PDFlib Virtual File system (PVF).

filename (Name string) The name of the virtual file. The filename may be empty if
keyword=filecount.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0
a null-terminated string must be provided.

keyword A keyword according to Table 8.2.

Returns The value of some file parameter as requested by keyword.

Details This function returns various properties of a virtual file or the PDFlib Virtual File sys-
tem (PVF). The property is specified by keyword.

Table 8.2 Keywords for info_pvf()

keyword description

exists 1 if the file exists in the PDFlib Virtual File system (and has not been deleted), otherwise 0

filecount Total number of files in the PDFlib Virtual File system maintained for the current PLOP object. The
filename parameter will be ignored.

iscopy (Only for existing virtual files) 1 if the copy option was supplied when the specified virtual file was creat-
ed, otherwise 0

lockcount (Only for existing virtual files) Number of locks for the specified virtual file set internally be PLOP func-
tions. The file can only be deleted if the lock count is 0.

size (Only for existing virtual files) Size of the specified virtual file in bytes.

8.3 Input Functions 141

8.3 Input Functions

C++ Java C# int open_document(String filename, String optlist)
Perl PHP int open_document(string filename, string optlist)

C int PLOP_open_document(PLOP *plop, const char *filename, int len, const char *optlist)

Open a PDF document (which may be protected) for processing.

filename The full path name of the PDF file to be opened. The file will be searched by
means of the SearchPath resource.

In non-Unicode language bindings the file name is converted to UTF-8 according to
the filenamehandling option (unless filenamehandling=unicode or the supplied file name
starts with a UTF-8 BOM). If len is different from 0 (C language binding only) the file
name is converted from UTF-16 to UTF-8 regardless of the option filenamehandling. An
error occurs if the file name cannot be converted or if the file name does not constitute
valid UTF-8 or UTF-16.

On Windows it is OK to use UNC paths or mapped network drives as long as you have
the necessary permissions (which may not be the case when running in ASP).

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

optlist An option list (see Section 8.1, »Option Lists«, page 135) according to Table 8.3.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call get_errmsg() to find out more details about the error.

Details The document handle can be used for the following purposes:
> use as input document for further processing with create_document();
> provide a page as signature appearance (signature option field and suboption visdoc);
> query document information with pCOS.

If the document is encrypted its user or master password (or a suitable digital ID in case
of certificate security) must be supplied unless the requiredmode option has been speci-
fied.

142 Chapter 8: PLOP and PLOP DS Library API Reference

Table 8.3 Options for open_document*()

option description

digitalid (Option list; only for input documents which are protected with certificate security) Digital ID of a recipi-
ent for which the document is encrypted. The digital ID is specified with the suboptions in Table 8.8. If
engine=mscapi the digitalid option may be missing or empty which means that all available IDs in the
default certificate store are tried.

engine (Keyword; only for input documents which are protected with certificate security) Cryptographic engine
for decrypting the document (default: builtin):
builtin Use the built-in cryptographic engine; the digitalid option must specify a virtual or disk file.
mscapi (Only on Windows) Use Microsoft Crypto API as cryptographic engine. The digital ID can be

supplied in the certificate store or a disk file. The digitalid option may be missing or empty.

inmemory (Boolean; only for open_document()) If true, PLOP loads the complete file into memory and process it
from there. This can result in a tremendous performance gain on some systems (especially MVS) at the
expense of memory usage. If false, individual parts of the document will be read from disk as needed.
Default: false

password (String; required for protected documents except with requiredmode)
For documents protected with password security: user or master password for the document. As detailed
in Table 5.2, page 65, the document’s user password, master password, or no password may be required
depending on which operation is applied to the document. On EBCDIC platforms the password is expect-
ed in ebcdic encoding or EBCDIC-UTF-8. If update=true the same password is used as master password
for the generated output document.
If digitalid is supplied: Password, pass phrase, or PIN for the digital ID required for documents protected
with certificate security. For engine=builtin exactly one of password or passwordfile is required; other
engines may use alternate methods. On EBCDIC platforms the password is expected in ebcdic encoding.

8.3 Input Functions 143

passwordfile (String; for engine=builtin exactly one of password or passwordfile is required; other engines may use
alternate methods) The first line of the file (excluding the line end character or characters) is used as
password, pass phrase, or PIN for the digital ID. On EBCDIC platforms the contents of the password file
are expected in ebcdic encoding.

repair (Keyword) Specifies how to treat damaged PDF input documents. Repairing a document takes more time
than normal parsing, but may allow processing of certain damaged PDFs. Note that some documents
may be damaged beyond repair (default: auto):
force Unconditionally try to repair the document, regardless of whether or not it has problems.
auto Repair the document only if problems are detected while opening the PDF.
none No attempt will be made at repairing the document. If there are problems in the PDF the

function call will fail.

requiredmode (Keyword) The minimum pcos mode (minimum/restricted/full) which is acceptable when opening
the document. The call fails if the resulting pCOS mode would be lower than the required mode. If the
call succeeds it is guaranteed that the resulting pCOS mode is at least the one specified in this option.
However, it may be higher; e.g. requiredmode=minimum for an unencrypted document results in full
mode. Default: full

shrug (Boolean) Permission restrictions are ignored (i.e. PDF processing is allowed) if the document could only
be opened in restricted pCOS mode otherwise. For password security this means that the document is en-
crypted with a master password, but only the user password (if any) has been supplied. For certificate se-
curity this means that a suitable recipient digital ID has been supplied, but the document does not set
master permission for this ID. If permission restrictions are ignored, the pCOS pseudo object shrug is set
to true. Default: false

xmppolicy (Keyword) Control treatment of invalid document-level XMP in the input document. Invalid XMP implies
that no standard identifier can be found, e.g. PDF/A documents will not be treated as such. Supported
keywords (default: rejectinvalid):
rejectinvalid

Throw an exception for invalid XMP which includes the XML parser error message, and stop
processing.

ignoreinvalid
(Implies sacrifice={pdfa pdfua pdfvt pdfx}) Treat invalid XMP as if there was no XMP
present. Output XMP will be generated based on document info entries; it will also include an
XML parsing error message in the <pdfx:Exception> element.

remove (Implies sacrifice={pdfa pdfua pdfvt pdfx}) Unconditionally ignore input XMP,
regardless of its validity. The output XMP is generated from scratch. This may be useful to
delete unwanted metadata. Standard identifiers in XMP (e.g. for PDF/A) are lost.

Table 8.3 Options for open_document*()

option description

144 Chapter 8: PLOP and PLOP DS Library API Reference

C++ int open_document_callback(void *opaque, plop_off_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, plop_off_t offset),
wstring optlist)

C int PLOP_open_document_callback(PLOP *plop, void *opaque, plop_off_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, plop_off_t offset),
const char *optlist)

Open a PDF document (which may be protected) via a user-supplied function.

opaque Pointer to some opaque data structure which will be passed to readproc. PLOP
does not use this pointer or the underlying data.

filesize The length of the document in bytes.

readproc A procedure which must be able to supply arbitrary chunks of size bytes of
the document at memory location buffer. The procedure must return the number of
bytes retrieved.

seekproc A procedure for seeking to position offset within the document. The proce-
dure must return -1 in case of error, and 0 otherwise.

optlist An option list (see Section 8.1, »Option Lists«, page 135) according to Table 8.3.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call get_errmsg() to find out more details about the error.

Bindings Only available in the C and C++ language bindings. The plop_off_t type is defined condi-
tionally in ploplib.h. It usually holds 64-bit values as offset type for large files beyond
2GB. The application must be built with Large File Support (LFS).

C++ Java C# void close_document(int doc, String optlist)
Perl PHP close_document(long doc, string optlist)

C void PLOP_close_document(PLOP *plop, int doc, const char *optlist)

Close the specified document.

doc A valid document handle obtained with open_document*().

optlist An option list (currently unused).

Details This function should be called before delete() for each document which has been
opened with open_document*(). It closes the document associated with the supplied
handle and releases all related resources.

8.4 Output Functions 145

8.4 Output Functions

C++ Java C# int create_document(String filename, String optlist)
Perl PHP int create_document(string filename, string optlist)

C int PLOP_create_document(PLOP *plop, const char *filename, int len, const char *optlist)

Create a PDF output document in memory or on disk file.

filename (Name string) The name of the generated output file, which must be differ-
ent from the input file name supplied to open_document(). If this is an empty string the
output is generated in memory, and can later be fetched with get_buffer().

In non-Unicode language bindings file names with len=0 are interpreted in the cur-
rent system codepage unless they are preceded by a UTF-8 BOM, in which case they are
interpreted as UTF-8 or EBCDIC-UTF-8.

len (C language binding only) Length of filename (in bytes) for UTF-16 strings. If len=0 a
null-terminated string must be provided.

optlist An option list (see Section 8.1, »Option Lists«, page 135) according to Table 8.4.

Returns -1 (in PHP: 0) on error, and a document handle otherwise. After an error it is recom-
mended to call get_errmsg() to find out more details about the error.

When a digital signature is created the function call fails in the following cases:
> a timestamp could not be obtained and the critical option is set;
> the signature chain is revalidated and a certificate has expired or has been revoked

in the meantime;
> a visualization document is supplied which doesn’t fit on the page;
> the input document is damaged and the signature is created in update mode.

If add_recipient() has been called one or more times, but none of the calls was successful
(i.e. all recipient certificates have been rejected), create_document() fails. This is to avoid
accidental creation of unprotected output.

Details Before calling this function open_document*() must have been called. The document to
be processed is supplied in the input option. See Section 5.2, »Password-protecting PDF
Documents with PLOP«, page 65, for conditions which are enforced for the user and
master passwords.

In signature mode create_document() may revalidate the signature chain, e.g. because
an OCSP response expired since it has been requested.

In certificate security mode, i.e. if add_recipient() has been called at least once with a
non-empty certificate option list, this function checks whether any recipient certificate
has expired. If so, the function call fails.

146 Chapter 8: PLOP and PLOP DS Library API Reference

Table 8.4 Options for create_document()

option description

docinfo (List of pairs of text strings) Set document info entries for the output document. If the document contains
document XMP metadata, standard document info entries are mirrored in the XMP. Each pair in the op-
tion list contains the name of an entry and its value. The supplied info entries are always synchronized to
XMP, even if no document info dictionary is emitted for PDF 2.0 (see option emitdocinfo). The following
predefined and custom keys can be supplied (default: document info entries are copied from the input
document):
Subject Subject of the document
Title Title of the document
Author Author of the document
Keywords Keywords describing the contents of the document
Trapped Indicates whether trapping has been applied to the document. Allowed values are True,

False, and Unknown. For PDF/X input Unknown is only allowed ifthe sacrifice option includes
pdfx or pdfvt.

any name other than Creator, CreationDate, Producer, ModDate, GTS_PDFXVersion, GTS_PDFXConfor-
mance, ISO_PDFEVersion
User-defined field name (must not contain any space character). PLOP supports an arbitrary
number of fields. A custom field name should be supplied only once.

emitdocinfo (Boolean; only relevant for PDF 2.0 output) If true, a document information dictionary is emitted. De-
fault: false

encryption (Keyword; only relevant for password security and certificate security) Encryption algorithm to be used
for protecting the output document.
The following keywords are supported for password security, i.e. if masterpassword is supplied (default:
algo11):

algo4 (Deprecated in PDF 2.0) Encrypt with AES-128 according to Acrobat 7/8, i.e. pCOS algorithm 4;
this increases the output PDF version to PDF 1.6 if required. Passwords may contain only Latin-
1 characters and are truncated to 32 characters.

algo11 Encrypt with AES-256 according to Acrobat X/XI/DC, i.e. pCOS algorithm 11; this increases the
output PDF version to PDF 1.7ext8 if required. Passwords may contain Unicode characters and
are truncated to 127 UTF-8 bytes.

The following keywords are supported for certificate security, i.e. add_recipient() has been called at least
once successfully with a non-empty certificate option list (default: algo10):
algo6 (Deprecated in PDF 2.0) Encrypt with certificate security on top of AES-128 according to

Acrobat 7, i.e. pCOS algorithm 6; this increases the output PDF version to PDF 1.6 if required.
algo10 Encrypt with certificate security on top of AES-256 according to Acrobat 9, i.e. pCOS algorithm

10; this increases the output PDF version to PDF 1.7ext3 if required.

input (Document handle obtained with open_document*(); required) Input document to be processed

limitcheck If true, the limit for the number of indirect PDF objects (8.388.607) is enforced in PDF/A-1/2/3 and PDF/X-
4/5 modes. Default: true

linearize (Boolean; cannot be combined with signature creation or metadata) If true, the output document will
be linearized. On MVS systems this option cannot be combined with in-memory generation (i.e. empty
filename parameter). Default: false

master-
password1

(String; forces update=false) Master password for password-protecting the document. If it is empty or
missing no master password is applied. Default: empty

8.4 Output Functions 147

metadata (Option list; can not be combined with linearize) Supply XMP metadata for the document. PDF/A and
PDF/X conformance entries are not allowed in the supplied XMP. Supported suboptions:
filename (Name string; required) The name of a file containing well-formed XMP metadata in UTF-8

format.
validate (Keyword) The supplied XMP metadata will be validated according to the keyword (note that

PLOP does not validate the XMP metadata in the input document):
none No validation
xmp2004 Validation according to the XMP 2004 specification
xmp2005 Validation according to the XMP 2005 specification
pdfa1 Like xmp2004, plus testing for predefined properties and schemas, and extension

schema validation according to PDF/A-1
pdfa2 Like xmp2005, plus testing for predefined properties and schemas, and extension

schema validation according to PDF/A-2 and PDF/A-3 (both standards have identi-
cal metadata requirements)

Default: pdfa1 if the input conforms to PDF/A-1 and the sacrifice option does not include
pdfa; pdfa2 if the input conforms to PDF/A-2 or PDF/A-3 and the sacrifice option does not
include pdfa; otherwise none

objectstreams (Keyword; forced to none for linearize=true as well as in PDF/A-1 and PDF/X-1a/3 modes) Create com-
pressed object streams which significantly reduce output file size (default: all):
all Write all simple objects except the document info dictionary into compressed objects streams

and create a compressed cross-reference stream.
none Don’t create any compressed object streams nor compressed cross-reference stream.
xref Generate a compressed cross-reference stream, but not any other compressed object streams.

optimize (Keyword; ignored if update=true) Optimizations to be applied (default: none):
all Apply resource optimizations.
none Don’t apply any optimization.

permissions (Keyword list; requires masterpassword or certificate security; not allowed if update=true) List of per-
mission restrictions for the document. It contains any number of the keywords noprint, nomodify,
nocopy, noannots, noassemble, noforms, noaccessible, nohiresprint, and plainmetadata (see Table
5.3, page 66).
In certificate security mode only the keyword plainmetadata is allowed; other permission restrictions
can be specified in the permissions option of add_recipient().
Default: empty

recordsize (Integer; z/OS and USS only) The record size of the output file. Default: 0 (unblocked output)

sacrifice (List of keywords) This option can be used for controlling the behavior in case of conflicts between proper-
ties of the input PDF and the requested action. By default, PLOP does not create any output if it detects a
conflict, but throws an exception instead. However, you can sacrifice some property of the document in
order to allow processing. The keywords listed in Table 8.5. are supported; they are ignored unless both
the input and action triggers are true. Default: empty list, i.e. an exception is thrown in case of a conflict
and no output will be created.

tempdirname (String) Name of a directory where temporary files needed for PLOP’s internal processing will be created.
If empty, PLOP will generate temporary files in the current directory. This option will be ignored if the
tempfilename option has been supplied. Default: empty

tempfilename (String; MVS only) Full file name for a temporary file needed for PLOP’s internal processing. If empty, PLOP
will generate a unique temp file name. The user is responsible for deleting the temporary file after
close_document(). If this option is supplied the filename parameter must not be empty. Default: empty

user-
password1

(String; requires masterpassword) User password for password-protecting the document. If it is empty or
missing no user password is applied. Default: empty

Table 8.4 Options for create_document()

option description

148 Chapter 8: PLOP and PLOP DS Library API Reference

C++ const char *get_buffer(long *size)
C# Java byte[] get_buffer()

Perl PHP string get_buffer()
C const char *PLOP_get_buffer(PLOP *plop, long *size)

Fetch full or partial buffer contents of the output document from memory.

size Only required in the C binding. A pointer to a memory location where the length
of the returned buffer will be stored.

Returns A buffer containing output data. The client must consume the buffer contents before
calling any other PLOP library function.

1. Arbitrary Unicode characters can be supplied for AES-256 (algorithm 11), but only Latin-1 characters for AES-128 (algorithm 4). The sup-
plied password is truncated to 127 UTF-8 bytes for algorithm 11 and to 32 characters for algorithm 4. On EBCDIC platforms the password
must be supplied in ebcdic encoding or EBCDIC-UTF-8.

Table 8.5 Keywords for the sacrifice option of create_document()

keyword description

encrypted-
attachments

(Input trigger: the document is not encrypted, but contains one ore more encrypted file attachments; ac-
tion trigger: the appropriate password for the encrypted file attachment has not been supplied with the
password option). If this keyword is supplied, encrypted file attachments for which the password is not
available are removed.
Documents containing encrypted file attachments for which the proper password has not been supplied
cannot be processed at all when signing with update=true.

fields (Input trigger: the document contains one or more non-signature form fields with NeedAppearances=
true; action trigger: signing with update=false). If this keyword is supplied, all form fields including sig-
nature fields are removed.

pdfa (Input trigger: the document conforms to any conformance level of PDF/A-1, PDF/A-2 or PDF/A-3; action
triggers: signature creation with option visdoc and an incompatible visualization document, any of the
options userpassword/masterpassword/permissions, certificate security mode, or a signature gets larg-
er than 64K for PDF/A-1 and 32K for PDF/A-2/3) If this keyword is supplied, PDF/A input can be processed,
but the PDF/A conformance entries are removed.

pdfua (Input trigger: the document conforms to PDF/UA-1; action triggers: encryption with the option
permissions and the keyword noaccessible) If this keyword is supplied, output can be created which
no longer conforms to PDF/UA and the PDF/UA conformance entries are removed.

pdfvt (Input trigger: the document conforms to PDF/VT-1; action triggers: same as for pdfx) If this keyword is
supplied, PDF/VT input can be processed, but the PDF/VT and PDF/X conformance entries are removed.

pdfx (Input trigger: the document conforms to PDF/X-1a or PDF/X-3/4/5; action triggers: signature creation in
combination with Trapped=Unknown in the docinfo option, or with the visdoc suboption of the field
option, or any of the options userpassword/masterpassword/permissions, or certificate security mode)
If this keyword is supplied, PDF/X input can be processed, but PDF/X conformance entries are removed. If
the document also conforms to PDF/VT-1 the PDF/VT conformance entries are removed as well.

signatures (Input trigger: the document contains one or more signatures; action trigger: all actions except signing
with update=true; if the document contains a certification signature which doesn’t allow changes, sign-
ing with update=true is also a trigger). If this keyword is supplied and both input and action triggers are
true, existing signatures are cleared (i.e. signature values, but not the corresponding form fields are re-
moved) in order to avoid creating output with invalid signatures. If both input and action triggers are
true and sacrifice={signatures} is not supplied, create_document() fails.

8.4 Output Functions 149

Details PDF output can only be fetched with this function if in-memory generation has been re-
quested by supplying an empty file name to create_document() (otherwise output will
be written to a file). get_buffer() must be called before calling close_document().

150 Chapter 8: PLOP and PLOP DS Library API Reference

8.5 Certificate Security

C++ Java C# int add_recipient(String optlist)
Perl PHP int add_recipient(string optlist)

C int PLOP_add_recipient(PLOP *plop, const char *optlist)

Add a recipient certificate for protecting the output document.

optlist Option list (see Section 8.1, »Option Lists«, page 135) specifying recipient infor-
mation according to Table 8.6:
certificate, conformance, engine, oaephash, rsapadding, permissions

Returns -1 (in PHP: 0) on error, and 1 otherwise. After an error it is recommended to call
get_errmsg() to find out more details about the error. The function call fails if the certif-
icate cannot be found or cannot be used for encrypting PDF documents.

Details If this function is called at least once with a non-empty certificate option the output doc-
ument(s) is encrypted against all specified recipient certificate(s). Certificates can be
supplied in a disk-based or virtual file or in the Windows certificate store. This function
can be called an arbitrary number of times to build the list of recipients for the docu-
ment. For most use cases it is recommended to include the document author’s certifi-
cate in the recipient list since otherwise the author will be unable to open the protected
document.

The supplied certificate must match the conditions described in »Requirements for
recipient certificates«, page 80.

An arbitrary number of documents can be encrypted against the same recipient list
with multiple calls to create_document(). However, if add_recipient() is called again after
create_document() it first resets the recipient list to an empty list so that a new list of re-
cipients can be created.

This function forces the signature suboption value update=false since the recipient
list cannot be modified in update mode.

Table 8.6 Options for add_recipient()

option description

certificate (Option list; required) Specify a recipient certificate against which the document will be encrypted. The
certificate is specified with suboptions according to Table 8.8. For security reasons the file is not searched
in the searchpath.
An empty lists disables certificate security. This may be useful to switch between certificate-based en-
cryption and other processing.

conformance (Keyword) Conformance of the generated encryption information (default: acrobat):
acrobat The document can be opened with Acrobat (for required Acrobat versions see Table 6.1, page

78). If the recipient certificate uses an algorithm which is not supported in Acrobat the
function call fails.

extended Accept the recipient certificate even if it uses one of the features below. It may not be possible
to open the document with Acrobat:
RSA certificates where the key length is not a multiple of 8;
ECC certificates with a Brainpool curve (RFC 5639).
Encryption with option rsapadding=oaep.

8.5 Certificate Security 151

engine (Keyword) Cryptographic engine to be used for locating the recipient’s certificate (default: builtin):
builtin Use the built-in cryptographic engine; certificates must be supplied in a virtual or disk file.
mscapi (Only on Windows) Use Microsoft Crypto API as cryptographic engine; certificates can be

supplied in the certificate store or a disk file.

oaephash (Keyword; only relevant for rsapadding=oaep) Hash function for use in OAEP (default: sha256):
sha1, sha256, sha384, or sha512

rsapadding (Keyword) Padding mechanism for RSA key transport (default: pkcs#1):
pkcs#1 RSA padding according to PKCS#1 v1.5. This scheme is supported in all Acrobat versions.
oaep OAEP (Optimal asymmetric encryption padding) according to RFC 3447. This method offers

security advantages. Since OAEP is not supported in Acrobat XI/DC this keyword requires the
option conformance=extended.

permissions (Keyword list) List of permission restrictions for the recipient. Multiple recipients may be assigned differ-
ent permission restrictions. The list contains any number of the permission restriction keywords noprint,
nomodify, nocopy, noannots, noassemble, noforms, noaccessible, nohiresprint according to Table 5.3.
The following additional keyword can be used:
nomaster Restrict printing, editing, and content extraction according to the specified permission restric-

tion keywords, and prevent changing the document’s security settings. If neither this keyword
nor one of the other permission restriction keywords above is supplied, the recipient has full
rights to the document. Setting any of the other permission restriction keywords above im-
plies nomaster.

The keyword plainmetadata can not be used here, but must be supplied to create_document() as it
doesn’t apply to individual recipients.
An empty list means that no permission restrictions apply to the recipient. Default: empty list

Table 8.6 Options for add_recipient()

option description

152 Chapter 8: PLOP and PLOP DS Library API Reference

8.6 Digital Signatures
Note Digital signature functionality is only available in the product PLOP DS.

C++ Java C# int prepare_signature(String optlist)
Perl PHP int prepare_signature(string optlist)

C int PLOP_prepare_signature(PLOP *plop, const char *optlist)

Prepare signature options.

optlist Option list specifying signature options according to Table 8.7:
> Options for the signing certificate (digital ID): digitalid, password, passwordfile
> Options for providing information about the signature context:

contactinfo, location, policy, reason
> Options for timestamping: doctimestamp, timestamp
> Option for signature visualization: field
> Options for providing validation information:

certfile, crl, crldir, crlfile, ocsp, rootcertdir, rootcertfile, validate
> Options for certification signatures: certification, preventchanges
> Options for controlling details of signature creation:

conformance, engine, ltv, signature, sigtype
> Options for controlling signature details: dss, rsaencoding, timestampsize, update

Returns -1 (in PHP: 0) on error, and 1 otherwise. After an error it is recommended to call
get_errmsg() to find out more details about the error. The function call may fail for the
following reasons:

> the signer’s digital ID cannot be found or the private key cannot be accessed, e.g. be-
cause of a wrong password or PIN;

> validation fails, e.g. no valid OCSP response or CRL could be retrieved and the corre-
sponding critical option is set;

> the requirements for ltv=full or validate=full cannot be fulfilled.

After a failed call to prepare_ signature() it is recommended to avoid another call with
the same options since this may disable a PKCS#11 token, e.g. if a wrong password/PIN
was supplied too often.

Details Signature options prepared with this function can be used to create an arbitrary num-
ber of signatures with create_document(). The supplied signature options will be used
for all signatures created with create_document() until prepare_ signature() is called
again (with other signature options or the option nosignature).

The signature preparation option list may be processed again at unpredictable times
before a signature is created. In particular, if a CRL or OCSP response is found to be out-
dated after a number of signatures has been created, the signature options are pro-
cessed again to refresh certificate revocation information.

This function terminates a PKCS#11 session which may be active from a previous
call. If you need to terminate a PKCS#11 session explicitly (e.g. to provide other threads
access to the token) you can call this function with the option signature=false.

8.6 Digital Signatures 153

Table 8.7 Options for prepare_signature()

option description

certfile (String; not for engine=mscapi) Name of a file which contains one or more intermediate CA certificates
in PEM encoding which may be required for validating and embedding the full certificate chain.

certification (Keyword) Create a certification (author) signature with the specified certification level. Values other
than none create a certification signature and should only be used for the first signature in a document
(default: none):
formfilling Certification signature: form filling and signing (by clicking a signature field, but not via

Acrobat’s menu items) are allowed. Adding pages by spawning page templates is also
allowed (as opposed to manually adding pages), but this technique is rarely used. Other
changes break the signature.

formsandannotations
Certification signature: form filling, signing and page adding as well as commenting (i.e.
annotation creation, deletion, and modification) are allowed; other changes break the
signature.

nochanges Certification signature: any change breaks the signature.
none Regular approval signature: document is not certified.

conformance (Keyword) Conformance of the generated signature (default: acrobat):
acrobat The signature can be validated with Acrobat (for required Acrobat versions see Table 7.1, page

101). The function call fails if a certificate or options are used which are not Acrobat-
compatible.

extended Accept the signing certificate and options even if the resulting signature cannot be validated
in Acrobat. The following features require conformance=extended:
ECC certificates with one of the Brainpool curves (RFC 5639)
Signature option ocsp where the suboption hash has a value different from sha1.

contactinfo (Text string; only relevant for digitalid) Information provided by the signer to enable a recipient to con-
tact the signer to verify the signature (e.g. a phone number). However, this is not recommended as a scal-
able solution for establishing trust. Acrobat 8/9/X display the contact information in the Signature
Properties dialog in the Signer tab. Acrobat XI/DC does not display the contact information.

crl (Option list or keyword; except for crl=none only relevant for digitalid; not for engine=mscapi) Ob-
tain a certificate revocation list (CRL) for the signing certificate and embed it in the signature or DSS if no
valid good OCSP response is available. Supported suboptions (default: {source={ } critical=false},
i.e. the CRLdp extension in the digital ID is used if present):
critical (Boolean) If true, a signature is only generated if a valid CRL could be retrieved for the signing

certificate; otherwise an error is returned and no signature is created. If this option is false
CRL embedding is silently ignored if no valid CRL could be retrieved. Default: true

filename (String) Name of a file containing a CRL for the signing certificate in DER encoding. If the
filename option is present a CRLdp extension in the signing certificate is ignored.

source (Network option list) Option list describing the CRL distribution point for the signing certi-
ficate. The protocols http and https are supported. The url suboption of the source option
or the source option itself can be omitted which means that the CRL distribution point
(CRLdp) extension in the digital ID is used as source.
All suboptions of the source network option list except url and httpauthentication are
also applied to CRL requests for certificates other than the signing certificate. This supports
use of the same set of credentials (e.g. username/password) in CRL calls for all involved
certificates.

Unless a CRLdp extension is present in the digital ID exactly one of the filename or source options must
be supplied.
The option crl=none means that no CRLs are retrieved over the network even if a CRLdp extension is pres-
ent. This affects all involved certificates, not just the signing certificate.

154 Chapter 8: PLOP and PLOP DS Library API Reference

crldir (String; not for engine=mscapi) Name of a directory containing CRLs in PEM encoding which may be re-
quired for validating the involved certificates. See »Naming convention for certificate and CRL files«,
page 175, regarding the file names.

crlfile (String; not for engine=mscapi) Name of a file containing one or more CRLs in PEM encoding which may
be required for validating the involved certificates.

digitalid (Option list; required for approval and certification signatures) Specify the signer’s digital ID with subop-
tions according to Table 8.8. The supported suboptions depend on the selected engine.

doc-
timestamp

(Option list; not for engine=mscapi) Generate a document-level timestamp from a trusted timestamp
authority (using the builtin engine). Supported suboptions: see option timestamp

dss (Boolean; not for engine=mscapi) If true, embed certificates and revocation information in a Document
Security Store (DSS) (see Section 7.3.3, »Document Security Store (DSS)«, page 107). Otherwise this data is
embedded in the signature. Validation information for embedded timestamps and document time-
stamps is always embedded in a DSS regardless of this option. Default: true for sigtype=cades as well as
for input documents with an existing DSS; false otherwise

engine (Keyword) Cryptographic engine to be used for signing (default: builtin):
builtin Use the built-in cryptographic engine; the digital ID must be supplied in a virtual or disk file.
mscapi (Only on Windows) Use Microsoft Crypto API as cryptographic engine; the digital ID can be

supplied in the certificate store or a disk file.
pkcs#11 Use the PKCS#11 interface to load the digital ID from a cryptographic token. The name of the

corresponding PKCS#11 DLL/shared library for the token must be provided in the filename
suboption of the digitalid option.

field (Option list; only relevant for digitalid) Coordinates and contents of the form field which holds the sig-
nature according to the suboptions in Table 8.9. Default: an invisible signature is created

location (Text string; only relevant for digitalid) Physical location or host name where the signature is created

ltv (Keyword; not for engine=mscapi) Specify whether the signed document is prepared for long-term vali-
dation (LTV) (default: try):
full (Implies validate=full) Embed full validation information to LTV-enable the signed docu-

ment. LTV status usually requires one of the rootcertdir or rootcertfile options; the
options certfile, ocsp and crl for providing additional certificates and revocation informa-
tion may also be required. The call fails if a required certificate or revocation information for a
certificate cannot be obtained.

none Don’t embed validation information. The signed document is smaller, but not LTV-enabled.
try Embed as much validation information as is available. The signed document may or may not

be LTV-enabled depending on available certificates and revocation information.

ocsp (Option list or keyword; not for engine=mscapi) Configure OCSP handling with suboptions according to
Table 8.10. Default: {source={ } critical=false}, i.e. the AIA extension in the digital ID is used if pres-
ent.
The option ocsp=none means that no OCSP responses are retrieved even if an AIA extension is present.
This affects all involved certificates, not just the signing certificate.

password (String which may be empty; for engine=builtin exactly one of password or passwordfile is required;
other engines may use alternate methods) Specifies the password, pass phrase, or PIN for the digital ID.
For engine=pkcs#11 this option must contain the PIN for the cryptographic token unless the PIN must be
entered interactively on the token itself (e.g. a smartcard reader with keyboard). On EBCDIC platforms
the password is expected in ebcdic encoding.

Table 8.7 Options for prepare_signature()

option description

8.6 Digital Signatures 155

passwordfile (String; for engine=builtin exactly one of password or passwordfile is required; other engines may use
alternate methods) The first line of the file (excluding the line end character or characters) is used as
password, pass phrase, or PIN for the digital ID. On EBCDIC platforms the contents of the password file
are expected in ebcdic encoding.

policy (Option list; only for sigtype=cades; not allowed if reason is specified; required for PAdES E-EPES) Sig-
nature policy which shall be used to validate the signature. Supported suboptions:
commitmenttype

(Keyword) Type of commitment associated with the signature within the scope of the
specified policy. Supported keywords (default: none):
approval The signer has approved the content of the message.
creation The signer has created the message (but not necessarily approved, nor sent it).
delivery The trusted service provider has delivered a message in a local store accessible to

the recipient of the message.
none No commitment type is included in the signature
origin The signer recognizes to have created, approved, and sent the message.
receipt The signer recognizes to have received the content of the message.
sender The signer has sent the message (but not necessarily created it).

notice (Text string) Human-readable text description of the signature policy
oid (String; required) Object ID of the signature policy
uri (String) URI of the signature policy

prevent-
changes

(Boolean; only if certification is different from none) If true, the changes which are prohibited with
the certification option (i.e. those changes which would invalidate the certification signature) are pre-
vented in Acrobat, i.e. the respective tools are disabled in the user interface. Default: true

reason (Text string; only relevant for digitalid; not allowed with policy) Reason for signing the document

rootcertdir (String; not for engine=mscapi) Name of a directory which contains trusted root CA certificates in PEM
encoding which may be required for validating the certificate chain. See »Naming convention for certifi-
cate and CRL files«, page 175, for file name conventions.

rootcertfile (String; not for engine=mscapi) Name of a file which contains one or more trusted root CA certificates in
PEM encoding which may be required for validating the certificate chain. For security reasons the file is
not searched in the searchpath.

rsaencoding (Keyword; not for engine=mscapi) Encoding method for RSA signatures (default: pkcs#1):
pkcs#1 RSA encoding according to PKCS#1 v1.5. This method is supported in all Acrobat versions.
pss RSA encoding according to PSS per RFC 3447/RFC 8017 which offers security advantages.

signature (Boolean) If false no signature is created. This may be useful to switch between signing and other pro-
cessing even if a prior call to prepare_signature() supplied signature options. Default: true

sigtype (Keyword; only relevant for digitalid; not for engine=mscapi) Signature type (default: cades):
cms CMS-based signature according to ISO 32000-1 and PAdES part 2 (ETSI TS 102 778-2)
cades CAdES-based signature according to CAdES (ETSI TS 101 733) and RFC 5126. This is a require-

ment for PAdES part 3 and part 4.

Table 8.7 Options for prepare_signature()

option description

156 Chapter 8: PLOP and PLOP DS Library API Reference

timestamp (Option list or keyword; not for engine=mscapi) The signature includes an embedded timestamp created
by a trusted timestamp authority (TSA). Supported suboptions (default: {source={ } critical=
false}, i.e. the TimeStamp extension in the digital ID is used if present):
critical (Boolean; forced to true for document-level timestamps) If true, a signature is only gene-

rated if a valid timestamp can be obtained; otherwise an error is returned. If this option is
false timestamping is silently ignored if no valid timestamp response can be obtained.
Default: true

hash (Keyword) Hash algorithm for creating the timestamp request. The algorithm must be
supported by the TSA (default: sha256): sha1 (not recommended), sha256, sha384, or
sha512

policy (String) OID of the TSA policy under which the timestamp must be created. Timestamping
fails if the TSA does not support the specified policy.

source (Network option list according to Table 8.11) Option list describing the TSA. The protocols http
and https are supported.
Only for embedded timestamps, but not for document-level timestamps: the url suboption
of the source option or the the source option itself may be omitted which means that the
TimeStamp extension in the digital ID is used.

The keyword none means that no timestamp is embedded even if the TimeStamp extension is present in
the signing certificate.

timestamp-
size

(Integer) Estimated size of timestamp objects, used for reserving space for the CMS container of docu-
ment timestamps and signature timestamps. Default: 7168

update (Boolean) If true, signature data is appended as one or more incremental PDF update sections to a copy
of the original document. Otherwise the PDF object hierarchy is rewritten which implies that existing sig-
natures are lost. Validation information for embedded timestamps and document timestamps is always
appended as update, regardless of this option. Update mode is not possible for input documents which
require repair.
Default: true but encryption forces the option value to false (i.e. the masterpassword or userpassword
options of create_document() or a call to add_recipient() with a non-empty certificate option list)

validate (Keyword) Control validation of involved certificates (default: full if ltv=full, otherwise formal):
formal The following checks are applied:

Critical extension flags, key usage etc. are checked;
OCSP response is retrieved if requested and requires a valid response with status good;
CRL is retrieved if requested and the signing certificate is checked against CRL; CRL date is
checked;

full Like validate=formal plus full validation of the certificate chain. This requires that all
necessary root and intermediate CA certificates are available, as well as OCSP or CRL
revocation information for all involved certificates (except for root certificates and an OCSP
responders with the id-pkix-ocsp-nocheck extension).

Table 8.7 Options for prepare_signature()

option description

8.6 Digital Signatures 157

Table 8.8 Suboptions of the digitalid option of prepare_signature() and open_document() as well as the certificate
option of add_recipient()

option description

Suboption for engine=builtin (if called from the digitalid or certificate option):

filename1 (String; required) If called from the digitalid option: name of a disk-based or virtual digital ID file in
PKCS#12 or PFX format (see Appendix A, »Working with Certificates« for conversion hints).
If called from the certificate option: name of a disk-based or virtual X.509 certificate file in PEM or DER
encoding. The certificate file must contain exactly one certificate.

Suboptions for engine=pkcs#11 (only if called from the digitalid option):

signercert (String; requires exactly one of id or label) Name of the signer’s certificate in DER encoding containing
the public key for the corresponding private key on the PKCS#11 token. The private key must be selected
via one of the options id or label, optionally qualified via the option subject. This option is required for
HSMs which store only the private key, but not the corresponding certificate (e.g. AWS CloudHSM). De-
fault: no certificate file name, i.e. the certificate must be available on the token along with the private
key

externalhash (Boolean) If true, the document hash for the signature is created via the PKCS#11 interface (i.e. on the to-
ken or HSM), otherwise it is created with the builtin engine. Default: false

filename (String; required) Name of the PKCS#11 DLL/shared library for the cryptographic token. This must be a
disk-based file, not a PVF file. Example: cryptoki.dll

id (String; requires signercert) Select a private key for signing by its key identifier (PKCS#11 attribute CK-
A_ID). It must be provided as a decimal string or hexadecimal string (prefixed with 0x), e.g.
id=0x03A247B2.

issuer (String) Select a digital ID by its issuer field (PKCS#11 attribute CKA_ISSUER). See option subject below
for a description of the query format.

label (String) Select a digital ID (or private key if signercert is specified) by its user-friendly label (PKCS#11 at-
tribute CKA_ LABEL).

serial (String) Select a digital ID by its serial number (PKCS#11 attribute CKA_SERIAL_NUMBER). The serial num-
ber must be provided as a decimal string or hexadecimal string (prefixed with 0x), e.g.
serial=0x03A247B2

slotid (Positive integer) Number of the slot that interfaces with the token. This can be used to directly select a
slot if multiple slots are available.

subject (String) Select a digital ID (or private key if signercert is specified) by its subject field (PKCS#11 attribute
CKA_ SUBJECT). The query must be in the format /type0=value0/type1=value1/...; characters may be
escaped by \ (backslash). The order of attributes is significant. If the token contains more than one digital
ID the options issuer, label, and subject can be used for certificate selection.
Example: subject={/C=DE/L=Munich/O=PDFlib GmbH/CN=PLOP Demo Signer RSA-2048}

sticky (Boolean) If true, the PKCS#11 DLL/shared library remains loaded until the end of the process. This may
offer performance advantages and may also be useful to work around problems in the DLL/shared library
such as memory leaks in its initialization routine. However, no other PKCS#11 DLL/shared library can be
loaded in the same process. Once this option has been set to true, subsequent calls within the same pro-
cess must also supply sticky=true and the suboption filename will silently be ignored. If false, the
PKCS#11 library is unloaded in the call to delete() for the last PLOP object which used this library. Default:
false

threadsafe (Boolean) If true, the PKCS#11 library must support thread-safe operation and is initialized in thread-safe
mode. If the PKCS#11 library doesn’t support thread-safe operation the call fails. If false, the PKCS#11 li-
brary is initialized in single-threaded mode which is only allowed for single-threaded applications. De-
fault: true

158 Chapter 8: PLOP and PLOP DS Library API Reference

Suboptions for engine=mscapi (if called from the digitalid or certificate option):

filename1 (String; one of filename or store is required if called from prepare_signature()2) Name of a disk-based or
virtual digital ID file in PKCS#12 or PFX format (see Appendix A, »Working with Certificates« for conver-
sion hints).

storelocation (Keyword) Location of the certificate store (default: current_user):
current_service, current_user, current_user_group_policy, local_machine,
local_machine_enterprise, local_machine_group_policy, services, users
The following locations can be opened remotely by prefixing the store option with the computer name
(separated by a backslash character): local_machine, local_machine_group_policy, services, users.

subject (String; required if called from prepare_signature() or add_recipient(), and store is specified; ignored
otherwise) Select a digital ID where the subject field contains the supplied string. It usually holds the
common name (CN) field of the digital ID. This suboption is not required when called from
open_document() since PLOP automatically determines the appropriate ID.

store (String; one of filename or store is required if called from prepare_signature()) Name of the certificate
store, e.g. My, Root, Trust. If storelocation=services or storelocation=users the store name must be
prefixed with the service or user name (separated by a backslash character). Default: My

1. For security reasons the file is not searched in the searchpath if called from the certificate option.
2. If neither filename nor store is supplied in prepare_signature() all available IDs in the default store are tried.

Table 8.8 Suboptions of the digitalid option of prepare_signature() and open_document() as well as the certificate
option of add_recipient()

option description

8.6 Digital Signatures 159

Table 8.9 Suboptions of the field option of prepare_signature()

option description

fillexisting (Boolean; only relevant if one or more signature fields exist in the document and the name option is not
supplied) If true, the first signature field in the input document is used for signing. If false, a new signa-
ture field is created with a unique name based on the pattern Signature#. This option is forced to true if
the visdoc option is supplied in PDF/UA mode. Default: false

name (Text string; must not end in a period ».« character) Name of an existing or new signature field. If the
document contains a signature field with this name, it is used for the signature (and page is ignored),
otherwise the field is created. If a field with this name exists, but has a type other than Signature, an er-
ror is thrown.
Default: if no signature fields exist, a new one with the name Signature1 is created. Otherwise field cre-
ation is controlled by the option fillexisting.

page (Positive integer; ignored if an existing signature field is filled) Number of the page on which the signa-
ture field is created. The first page has number 1. Default: 1

position (List with two Keywords) Relative position of the visualization page within the field. The visualization
page is placed in the rectangle according to the supplied keywords and scaled such that it entirely fits
into the rectangle while preserving its aspect ratio. The first keyword specifies the horizontal position
with one of the values left, center, right; the second keyword specifies the vertical position with one
of the values top, center, bottom. If both values are equal, it is sufficient to specify a single keyword. De-
fault: {center}

rect (Rectangle) Coordinates of the lower left and upper right corners of the signature field in PDF coordinates
(one unit is 1/72 inch, origin at the lower left corner). The specified rectangle is completely filled with the
visualization page. In order to avoid distortion the keyword adapt can be supplied instead of one or two
coordinates. In this case the missing coordinate(s) are calculated automatically. At least one corner must
be specified explicitly. The rectangle must not exceed the page. See »Location and size of the signature
field«, page 103, for more details on the fitting process. An empty rectangle with four zero values implies
an invisible field.
Default: if an existing field is used its rectangle serves as default; otherwise an empty rectangle (i.e. invis-
ible signature)

tooltip (Non-empty text string) Text of the tooltip (also called alternative text) for a signature field. It may be
used by screen readers to improve accessibility. Default: none

visdoc (Document handle obtained with open_document(); not allowed in PDF/X or PDF/VT mode; only al-
lowed for a non-empty field rectangle and required in this case) Document from which a page is used for
visualizing the signature on the page. In PDF/A mode the visualization document must be compatible to
the generated output (see »PDF/A conformance«, page 104). In PDF/UA mode the input document must
contain a suitable signature form field (see »PDF/UA conformance«, page 105).

vispage (Integer; only relevant if visdoc is supplied) Page number in the document which is used for visualizing
the signature (the first page has number 1). Default: 1

160 Chapter 8: PLOP and PLOP DS Library API Reference

Table 8.10 Suboptions of the ocsp option of prepare_signature()

option description

critical (Boolean; only relevant for digitalid) If true, a signature is only generated if a valid OCSP response for
the signing certificate with status good was returned; otherwise an error is returned and no signature is
created. If this option is false OCSP response embedding is silently ignored if no valid good OCSP re-
sponse could be retrieved. Default: true

freshness (Integer) Maximum amount of time in minutes after the OCSP response’s thisUpdate entry for which a
response is regarded as valid. If the response is older than the specified period (extended by maxclock-
skew) it is regarded as invalid and not used. Default: 1440 (1 day)

hash (Keyword) Hash algorithm used to identify the certificate in all OCSP requests and responses. The algo-
rithm must be supported by the OCSP responder (default: sha1): sha1, sha256, sha384, or sha512
Since Acrobat XI/DC support only sha1 all other values require conformance=extended.

maxclockskew (Integer) Maximum tolerance in minutes when checking whether the response is fresh enough according
to the thisUpdate entry in the OCSP response and the freshness option. This option can be used to com-
pensate network delays or inaccurate system clocks. Default: 5

nonce (Boolean) If true, the nonce extension (»number used only once«) is included in all OCSP requests, and
the same value must be present in OCSP responses. Nonce handling prevents replay attacks, but also
thwarts caching and is therefore not supported by some OCSP responders. Default: true

source (Network option list) Option list describing a server from which an OCSP response for the signing certifi-
cate is requested and then embedded in the signature or DSS. The protocols http and https are support-
ed. The url suboption of the source option or the source option itself can be omitted which means that
the URL is taken from the authorityInfoAccess extension (AIA) in the digital ID.
All suboptions of the source network option list except url and httpauthentication are also applied to
OCSP requests for certificates other than the signing certificate. This facilitates the use of the same cre-
dentials (e.g. username/password) in OCSP calls for all involved certificates.

8.6 Digital Signatures 161

Network option lists. Some digital signature features require access to a network re-
source such as TSAs and OCSP responders. The server and details for accessing it are
specified in a network option list according to Table 8.11. The options in Table 8.7 and Ta-
ble 8.10 which uses the data type »network option list« specify the list of supported pro-
tocols. Some examples for using network options lists (the network option list part is
shown in blue):

timestamp={source={url={http://timestamp.acme.com/}} hash=sha384} digitalid=...

ocsp={source={url={http://ocsp.acme.com/}} } digitalid=...

ocsp={source={url={http://ocsp.acme.com/}
proxy={http://user:password@proxy.company.com:8080}} } digitalid=...

ocsp={source={timeout=1000}} digitalid=...

Table 8.11 Suboptions for a network option list

option description

httpauthen-
tication

(Keyword; only for http) Authentication method to try. A server may not support a particular authenti-
cation method (or any at all). Setting the authentication type explicitly may be preferable over the de-
fault (even if it results in the same method being selected) due to performance advantages. Supported
keywords (default: any):
any Select the most secure authentication method supported by the server.
anysafe Like any, but exclude basic authentication.
basic Basic authentication with user name and password. This method is not recommended since

user name and password are sent over the network in plain text.
digest Digest authentication with hashed user name and password according to RFC 2617.
ntlm NTLM authentication as used in Microsoft products

password (String) Password for basic and digest authentication

proxy (Option list) Suboptions for configuring network access through a proxy server:
httpauthentication

(Keyword; only for http proxy) See main network option of the same name.
noproxy (String) Comma-separated list of host names that do not require a proxy. A numerical IPv6

address must be specified without enclosing brackets.
password (String) See main network option of the same name.
sslcertdir (String; only for https proxy) See main network option of the same name.
sslcertfile (String; only for https proxy) See main network option of the same name.
sslverifyhost (String; only for https proxy) See main network option of the same name.
sslverifypeer(String; only for https proxy) See main network option of the same name.
url (String; required) Host name or numerical IP address of the proxy server. The URL may include

user name and password. A numerical IPv6 address must be enclosed in brackets [...]. A
port number may be appended with a colon ’:’ at the end. If no port number is specified the
default port number 1080 is used. If no protocol is specified http is used.

username (String) See main network option of the same name.
A proxy server can also be configured with the common environment variables http_proxy, https_-
proxy, no_proxy, all_proxy. Options have priority over environment variables.

sslcertdir (String; only for https) Name of a directory which contains trusted CA certificates in PEM encoding
which may be required for establishing an SSL connection. See »Naming convention for certificate and
CRL files«, page 175, for file name conventions.

162 Chapter 8: PLOP and PLOP DS Library API Reference

sslcertfile (String; only for https) Name of a file which contains one or more trusted CA certificates in PEM encod-
ing which may be required for establishing an SSL connection.

sslverifyhost (Boolean; only for https) If true, the Subject Alternate Name field in the server certificate must match
the host name in the URL in order to establish an SSL connection. Default: true

sslverifypeer (Boolean; only for https) If true, the server certificate must be verifiable against the set of trusted certif-
icates supplied with the sslcertdir or sslcertfile options. If false, a server certificate which cannot
be verified because no known trusted root is available for it is accepted. Default: true

timeout (Integer) Timeout for accessing the resource in milliseconds. The value 0 means that no timeout is in ef-
fect. Default: 15000

url (String; usually required, but optional for cases where the URL is known from context) Fully qualified URL
of the network resource including the leading protocol identifier. The set of supported protocols is speci-
fied in the description of the respective option which deploys a network option list. Characters can be
specified in URL encoding, e.g. %20. The URL may include user name and password, e.g.
http://user:password@timestamp.acme.com/

username (String) User name for basic and digest authentication

Table 8.11 Suboptions for a network option list

option description

8.7 Exception Handling 163

8.7 Exception Handling
PLOP supplies auxiliary methods for handling library exceptions in the C language. Oth-
er PLOP language bindings use the native exception handling system of the respective
language, such as try/catch clauses. The language wrappers pack information about ex-
ception number, description, and API method name into the generated exception ob-
ject.

When a PLOP exception occurred, no other PLOP function except delete(),
get_errnum(), get_errmsg(), get_apiname() may be called with the corresponding PLOP
object.

The PLOP language bindings for Java and .NET define a separate PLOPException object
which offers several members to access detailed error information.

C++ Java C# int get_errnum()
Perl PHP int get_errnum()

C int PLOP_get_errnum(PLOP *plop)

Get the number of the last thrown exception, or the reason of a failed function call.

Returns The exception’s error number.

Bindings In .NET this method is also available as Errnum in the PLOPException object.
In Java this method is also available as get_errnum() in the PLOPException object.

C++ Java C# String get_errmsg()
Perl PHP string get_errmsg()

C const char *PLOP_get_errmsg(PLOP *plop)

Get the descriptive text of the last thrown exception, or the reason of a failed function
call.

Returns A string describing the error, or an empty string if the last API call didn’t cause any error.

Bindings In .NET this method is also available as Errmsg in the PLOPException object.
In Java this method is also available as getMessage() in the PLOPException object.

C++ Java C# String get_apiname()
Perl PHP string get_apiname()

C const char *PLOP_get_apiname(PLOP *plop)

Get the name of the API method which threw the last exception or failed.

Returns The name of a PLOP API method.

Bindings In .NET this method is also available as Apiname in the PLOPException object.
In Java this method is also available as get_apiname() in the PLOPException object.

164 Chapter 8: PLOP and PLOP DS Library API Reference

C PLOP_TRY(PLOP *plop)

Set up an exception handling frame; must always be paired with PLOP_CATCH().

Details See »Error handling«, page 45.

C PLOP_CATCH(PLOP *plop)

Catch an exception; must always be paired with PLOP_TRY().

Details See »Error handling«, page 45.

C PLOP_EXIT_TRY(PLOP *plop)

Inform the exception machinery that a PLOP_TRY() block will be left without entering
the corresponding PLOP_CATCH() clause.

Details See »Error handling«, page 45.

C PLOP_RETHROW(PLOP *plop)

Re-throw an exception to another handler.

Details See »Error handling«, page 45.

8.8 Global Options 165

8.8 Global Options

C++ Java C# void set_option(String optlist)
Perl PHP set_option(string optlist)

C void PLOP_set_option(PLOP *plop, const char *optlist)

Set one or more global options for PLOP.

optlist An option list specifying global options according to Table 8.12. If an option is
provided more than once the last instance overrides all previous ones. In order to sup-
ply multiple values for a single option (e.g. searchpath) supply all values in a list argu-
ment to this option.

Details Multiple calls to this function can be used to accumulate values for those options
marked in Table 8.12. For unmarked options the new value overrides the old one.

Table 8.12 Global options for set_option()

option description

filename-
handling

(Keyword) Indicates the encoding of file names. File names supplied as function parameters without UTF-
8 BOM in non-Unicode aware language bindings are interpreted according to this option to guard
against characters which would be illegal in the file system and to create a Unicode version of the file
name. An error occurs if the file name contains characters outside the specified encoding. Default:
unicode on Windows and macOS, otherwise honorlang:
ascii 7-bit ASCII
basicebcdic Basic EBCDIC according to code page 1047, but only Unicode values <= U+007E
basicebcdic_37

Basic EBCDIC according to code page 0037, but only Unicode values <= U+007E
honorlang The environment variables LC_ALL, LC_CTYPE and LANG are interpreted. The codeset specified

in LANG is applied to file names if it is available.
unicode Unicode encoding in (EBCDIC-) UTF-8 format
all names of 8-bit and CJK encodings

Any encoding recognized by PLOP

license (String) Set the license key. It must be set before the first call to open_document*().

licensefile (String) Set the name of a file containing the license key(s). The license file can be set only once before the
first call to open_document*(). Alternatively, the name of the license file can be supplied in an environ-
ment variable called PDFLIBLICENSEFILE or (on Windows) via the registry.

frontpage (Boolean) If false, an exception is thrown if no valid license key was found; if true, a front page is creat-
ed in evaluation mode according to Section 0.1, »Installing the Software«, page 7. This option must be set
before the first call to open_document*(). It doesn’t have any effect if a valid license key was found. De-
fault: true

logging1 (Option list; unsupported) An option list specifying logging output according to Table 8.14. Alternatively,
logging options can be supplied in an environment variable called PLOPLOGGING or on Windows via the
registry. An empty option list will enable logging with the options set in previous calls. If the environment
variable is set logging will start immediately after the first call to new().

mmiolimit (Integer) Upper limit for the size of input files in MB (=1024*1024 bytes) which will be memory-mapped.
Setting this option to 0 (zero) disables memory mapping. Disabling memory mapping can be used on
non-Windows systems to avoid problems when remote files suddenly become unavailable while being
used. Default: 50 on 32-bit platforms, 2048 otherwise

166 Chapter 8: PLOP and PLOP DS Library API Reference

searchpath1 (List of name strings) Relative or absolute path name(s) of a directory containing files to be read. The
search path can be set multiply; the entries will be accumulated and used in least-recently-set order. It is
recommended to use double braces even for a single entry to avoid problems with directory names
containing space characters. An empty string list (i.e. {{}}) deletes all existing search path entries in-
cluding the default entries. On Windows the searchpath can also be set via a registry entry. Default:
empty

userlog (Name string) Arbitrary string which will be written to the log file if logging is enabled.

1. Option values can be accumulated with multiple calls.

Table 8.12 Global options for set_option()

option description

8.9 Logging 167

8.9 Logging
The logging feature can be used to trace API calls. The contents of the log file may be
useful for debugging purposes or may be requested by PDFlib GmbH support. Table 8.13
lists the options for activating the logging feature with set_option().

The logging options can be supplied in the following ways:
> As an option list for the logging option of set_option(), e.g.:

plop.set_option("logging={filename={debug.log} remove}");

> In an environment variable called PLOPLOGGING. Doing so will activate the logging
output starting with the very first call to one of the API functionAPI methods.

> (Unsupported) In the following registry key:

HKLM\SOFTWARE\PDFlib\PLOP5\PLOPLOGGING

Table 8.13 Logging-related keys for set_option()

key explanation

logging Option list with logging options according to Table 8.14

userlog String which will be copied to the log file

Table 8.14 Suboptions for the logging option of set_option()

option explanation

classes (Option list) Option list where each option describes a logging class, and the corresponding value de-
scribes the level. Level 0 disables a logging class, positive numbers enable a class. Increasing levels provide
more detailed output. If no level is mentioned for a class the value 1 must be used (initial value: api=1).
api Log all API calls with their function parameters and results. If api=2 a timestamp will be

created in front of all API trace lines, and deprecated functions and options will be marked.
convert String conversion.
digsig Log details about digital signature creation:

1 basic information
2 validation information; OCSP and CRL details; PKCS#11 library, slot, and token info
5 certificate details

filesearch Log all attempts related to locating files via SearchPath or PVF.
network Log details about network activity:

1 general network information
2 network headers and statistics
3 detailed network data

resource Log all attempts at locating resources via Windows registry, UPR definitions as well as the
results of the resource search.

user User-specified logging output supplied with the userlog option.
warning Log all warnings, i.e. error conditions which can be ignored or fixed internally. If warning=2

messages from functions which do not throw any exception, but hook up the message text
for retrieval via get_errmsg(), and the reason for all failed attempts at opening a file
(searching for a file in searchpath) will also be logged.

disable (Boolean) Disable logging output. Default: false

168 Chapter 8: PLOP and PLOP DS Library API Reference

filename (String) Name of the log file (stdout and stderr are also acceptable). Output will be appended to any ex-
isting contents. The log file name can alternatively be supplied in an environment variable called
PLOPLOGFILENAME (in this case the option filename will be ignored). Default: plop.log (on Windows
and macOS in the / directory, on Unix in /tmp)

flush (Boolean) If true, the log file will be closed after each output, and reopened for the next output to make
sure that the output will actually be flushed. This may be useful when chasing program crashes where
the log file is truncated, but significantly slows down processing. If false, the log file will be opened only
once. Default: false

includepid (Boolean; not on MVS) Include the process id in the log file name. This should be enabled if multiple pro-
cesses use the same log file name. Default: false

includetid (Boolean; not on MVS) Include the thread id in the log file name. This should be enabled if multiple
threads in the same process use the same log file name. Default: false

includeoid (Boolean; not on MVS) Include the object id in the log file name. This should be enabled if multiple PLOP
objects in the same thread use the same log file name. Default: false

remove (Boolean) If true, an existing log file will be deleted before writing new output. Default: false

removeon-
success

(Boolean) Remove the generated log file in delete() unless an exception occurred. This may be useful for
analyzing occasional problems in multi-threaded applications or problems which occur only sporadically.
It is recommended to combine this option with includepid/includetid/includeoid as appropriate.

restore (Boolean) Restore the state of all logging class levels (except those specified in the same option list) to the
least recently saved state.

save (Boolean) Save the state of all logging class levels (except those specified in the same option list). Up to 7
save levels are supported.

stringlimit (Integer) Limit for the number of characters in text strings, or 0 for unlimited. Default: 0

Table 8.14 Suboptions for the logging option of set_option()

option explanation

8.10 pCOS Functions 169

8.10 pCOS Functions
The full pCOS syntax for retrieving object data from a PDF is supported; see the pCOS
Path Reference for a detailed description.

C++ Java C# double pcos_get_number(int doc, String path)
Perl PHP double pcos_get_number(long doc, string path)

C double PLOP_pcos_get_number(PLOP *plop, int doc, const char *path, ...)

Get the value of a pCOS path with type number or boolean.

doc A valid document handle obtained with open_document*().

path A full pCOS path for a numerical or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The numerical value of the object identified by the pCOS path. For Boolean values 1 will
be returned if they are true, and 0 otherwise.

C++ Java C# string pcos_get_string(int doc, String path)
Perl PHP string pcos_get_string(long doc, string path)

C const char *PLOP_pcos_get_string(PLOP *plop, int doc, const char *path, ...)

Get the value of a pCOS path with type name, number, string, or boolean.

doc A valid document handle obtained with open_document*().

path A full pCOS path for a string, number, name, or boolean object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns A string with the value of the object identified by the pCOS path. For Boolean values the
strings true or false will be returned.

Details This function raises an exception if pCOS does not run in full mode and the type of the
object is string. However, the objects /Info/* (document info keys) can also be retrieved in
restricted pCOS mode if nocopy=false or plainmetadata=true, and bookmarks[...]/Title as
well as all paths starting with pages[...]/annots[...]/ can be retrieved in restricted pCOS
mode if nocopy=false.

170 Chapter 8: PLOP and PLOP DS Library API Reference

This function assumes that strings retrieved from the PDF document are text strings.
String objects which contain binary data should be retrieved with pcos_get_ stream() in-
stead which does not modify the data in any way.

Bindings C language binding: The string will be returned in UTF-8 format without BOM. The re-
turned strings will be stored in a ring buffer with up to 10 entries. If more than 10
strings are queried, buffers will be reused, which means that clients must copy the
strings if they want to access more than 10 strings in parallel. For example, up to 10 calls
to this function can be used as parameters for a printf() statement since the return
strings are guaranteed to be independent if no more than 10 strings are used at the
same time.

C++ language binding: The string will be returned as wstring in the default wstring con-
figuration of the C++ wrapper. In string compatibility mode on zSeries the result will be
returned in EBCDIC-UTF-8 without BOM.

Java and .NET: the result will be provided as Unicode string.

Perl, PHP, Python and Ruby language bindings: the result will be provided as UTF-8
string.

C++ const unsigned char *pcos_get_stream(int doc, int *length, string optlist, wstring path)
C# Java byte[] pcos_get_stream(int doc, String optlist, String path)

Perl PHP string pcos_get_stream(long doc, string optlist, string path)
C const unsigned char *PLOP_pcos_get_stream(PLOP *plop, int doc, int *length, const char *optlist,

const char *path, ...)

Get the contents of a pCOS path with type stream, fstream, or string.

doc A valid document handle obtained with open_document*().

length (C and C++ language bindings only) A pointer to a variable which will receive
the length of the returned stream data in bytes.

optlist An option list specifying stream retrieval options according to Table 8.15.

path A full pCOS path for a stream or string object.

Additional parameters (C language binding only) A variable number of additional pa-
rameters can be supplied if the key parameter contains corresponding placeholders (%s
for strings or %d for integers; use %% for a single percent sign). Using these parameters
will save you from explicitly formatting complex paths containing variable numerical
or string values. The client is responsible for making sure that the number and type of
the placeholders matches the supplied additional parameters.

Returns The unencrypted data contained in the stream or string. The returned data will be emp-
ty (in C and C++: NULL) if the stream or string is empty, or if the contents of encrypted
attachments in an unencrypted document are queried and the attachment password
has not been supplied.

If the object has type stream, all filters will be removed from the stream contents (i.e.
the actual raw data will be returned). If the object has type fstream or string the data will
be delivered exactly as found in the PDF file, with the exception of ASCII85 and ASCII-
Hex filters which will be removed.

8.10 pCOS Functions 171

Details This function will throw an exception if pCOS does not run in full mode. As an excep-
tion, the object /Root/Metadata can also be retrieved in restricted pCOS mode if
nocopy=false or plainmetadata=true. An exception will also be thrown if path does not
point to an object of type stream, fstream, or string.

Despite its name this function can also be used to retrieve objects of type string. Un-
like pcos_get_string(), which treats the object as a text string, this function will not mod-
ify the returned data in any way. Binary string data is rarely used in PDF, and cannot be
reliably detected automatically. The user is therefore responsible for selecting the ap-
propriate function for retrieving string objects as binary data or text.
C and C++ language bindings: The returned data buffer can be used until the next call to
this function.

Table 8.15 Options for pcos_get_stream()

option description

convert (Keyword; will be ignored for streams which are compressed with unsupported filters) Controls whether
or not the string or stream contents will be converted (default: none):
none Treat the contents as binary data without any conversion.
unicode Treat the contents as textual data (i.e. exactly as in pcos_get_string()), and normalize it to

Unicode. In non-Unicode-capable language bindings this means the data will be converted to
UTF-8 format without BOM.
This option is required for the data type »text stream« in PDF which is rarely used (e.g. it can
be used for JavaScript, although the majority of JavaScripts is contained in string objects, not
stream objects).

172 Chapter 8: PLOP and PLOP DS Library API Reference

8.11 Unicode Conversion Function

C++ string convert_to_unicode(wstring inputformat, string input, wstring optlist)
C# Java string convert_to_unicode(String inputformat, byte[] input, String optlist)

Perl PHP string convert_to_unicode(string inputformat, string input, string optlist)
C const char *PLOP_convert_to_unicode(PLOP *p,

const char *inputformat, const char *input, int inputlen, int *outputlen, const char *optlist)

Convert a string in an arbitrary encoding to a Unicode string in various formats.

inputformat Unicode text format or encoding name specifying interpretation of the
input string:

> Unicode text formats: utf8, ebcdicutf8 (on EBCDIC platforms), utf16, utf16le, utf16be,
utf32

> All internally known 8-bit encodings, encodings available on the host system, and
the CJK encodings cp932, cp936, cp949, cp950

> The keyword auto specifies the following behavior: if the input string contains a
UTF-8 or UTF-16 BOM it will be used to determine the appropriate format, otherwise
the current system codepage will be assumed.

input String to be converted to Unicode.

inputlen (C language binding only) Length of the input string in bytes. If inputlen = 0 a
null-terminated string must be provided.

outputlen (C language binding only) C-style pointer to a memory location where the
length of the returned string (in bytes) will be stored.

optlist An option list specifying options for input interpretation and Unicode conver-
sion:

> Input filter options according to Table 8.16: charref, escapesequence
> Unicode conversion options according to Table 8.16:

bom, errorpolicy, inflate, outputformat

Returns A Unicode string created from the input string according to the specified parameters
and options. If the input string does not conform to the specified input format (e.g. in-
valid UTF-8 string) an empty output string will be returned if errorpolicy=return, and an
exception will be thrown if errorpolicy=exception.

Details This function may be useful for general Unicode string conversion. It is provided for the
benefit of users working in environments which do not provide suitable Unicode con-
verters.

Bindings C binding: the returned strings will be stored in a ring buffer with up to 10 entries. If
more than 10 strings are converted, the buffers will be reused, which means that clients
must copy the strings if they want to access more than 10 strings in parallel. For exam-
ple, up to 10 calls to this function can be used as parameters for a printf() statement
since the return strings are guaranteed to be independent if no more than 10 strings are
used at the same time.

8.11 Unicode Conversion Function 173

Table 8.16 Options for convert_to_unicode()

option description

bom (Keyword; ignored for outputformat=utf32; in .NET, Java, Objective-C and Python only none is allowed)
Policy for adding a byte order mark (BOM) to the output string. Supported keywords (default: none):
add Add a BOM.
keep Add a BOM if the input string has a BOM.
none Don’t add a BOM.
optimize Add a BOM except if outputformat=utf8 or ebcdicutf8 and the output string contains only

characters in the range < U+007F.

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: false

errorpolicy (Keyword) Behavior in case of conversion errors (default: exception):
return The replacement character will be used if a character reference cannot be resolved. An empty

string will be returned in case of conversion errors.
exception An exception will be thrown in case of conversion errors.

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in strings. Default: false

inflate (Boolean; only for inputformat=utf8; will be ignored if outputformat=utf8) If true, an invalid UTF-8
input string will not trigger an exception, but rather an inflated byte string in the specified output for-
mat will be generated. This may be useful for debugging. Default: false

output-
format

(Keyword) Unicode text format of the generated string: utf8, ebcdicutf8 (on EBCDIC platforms), utf16,
utf16le, utf16be, utf32. An empty string is equivalent to utf16. Default: utf16
Unicode-capable language bindings: the output format is forced to utf16.
C++ language binding: only the following output formats are allowed: utf8, utf16, utf32.

174 Chapter 8: PLOP and PLOP DS Library API Reference

Chapter A: Working with Certificates 175

A Working with Certificates
In this appendix we provide additional information which may be useful when working
with certificates and PLOP or PLOP DS.

Display contents of a certificate. You can display the contents of a certificate or digital
ID in PKCS#12 format with the following Windows command:

certutil -dump -p demo demo_signer_rsa_2048.p12

Display the contents of a certificate in PEM encoding with OpenSSL:

openssl x509 -inform PEM -in demo_recipient_1.pem -noout -text

Extract the public key from a digital ID to create a certificate with OpenSSL. If you
have a digital ID in PKCS#12 format (with public and private key) and need a corre-
sponding certificate in PEM encoding (with the public key only) for others to encrypt
documents, you can use the following command which will prompt for the password:

openssl pkcs12 -in demo_recipient_1.p12 -clcerts -nokeys -out
demo_signer_rsa_2048.pem

Convert a certificate to PEM with OpenSSL. The signature options certfile and rootcert-
file as well as the suboption sslcertfile in a network option list accept certificates only in
the text-based PEM encoding. On EBCDIC platforms PEM certificates must be encoded in
EBCDIC.

You can use the following OpenSSL command to convert certificates in the binary
DER encoding to the required text-based PEM encoding:

openssl x509 -inform DER -outform PEM -in PDFlibDemoCA_G3.crt -out PDFlibDemoCA_G3.pem

Note that .cer and .crt files may use DER or PEM encoding. Since the file name suffix is
not reliable, you can check the format in a text editor: while DER encoding consists of bi-
nary data, PEM encoding is a text-based format with Base-64-encoded data enclosed by
the lines

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

Naming convention for certificate and CRL files. The signature options crldir and root-
certdir as well as the suboption sslcertdir in a network option list accept the name of a di-
rectory where certificates or CRLs are searched. These files must be stored in the text-
based PEM encoding and must be named according to the OpenSSL 1.0.0 (or above) file
name hashing convention.

The OpenSSL command c_rehash creates symbolic links with the required hashed file
names for one or more directories containing certificates or CRLs in PEM encoding:

c_rehash .

176 Chapter A: Working with Certificates

If you need to create hashed file names manually apply the following steps:
> Create the file name hashes for individual certificate or CRL files with an OpenSSL

command similar to one the following:

create the hashed file name for a certificate in PEM encoding
openssl x509 -hash -noout -in PDFlibDemoCA_G3.pem

create the hashed file name for a certificate in DER encoding
openssl x509 -hash -noout -inform DER -in PDFlibDemoCA_G3.crt

create the hashed file name for a CRL in PEM encoding
openssl crl -hash -noout -in PDFlibDemoCA_G3.crl.pem

create the hashed file name for a CRL in DER encoding
openssl crl -hash -noout -inform DER -in PDFlibDemoCA_G3.crl

> Append a ’.’ (period) character. For CRLs also append the character ’r’;
> Append the decimal number 0 (zero). If there is a conflict within the hashed file

names in a directory increase the number by one.

Note OpenSSL on zSeries cannot be used for calculating compatible file name hashes due to a bug.

Syntax for object identifiers (OIDs). The oid suboption of the policy option and the
policy suboption of the timestamp option expect an object identifier (OID) which speci-
fies the policy. OIDs consist of a series of decimal numbers where the numbers are sepa-
rated by whitespace or period characters ».«, e.g.

2.16.840.1.101.3.2.1.48.9

Chapter B: Combining PDFlib with PLOP DS 177

B Combining PDFlib with PLOP DS
PLOP DS has been designed for easy interoperability with PDFlib for dynamically gener-
ating and signing PDF documents. In this appendix we discuss how you can combine
both products.

File-Based Combination. The file-based method is recommended if you deal with very
large PDF documents, or if you need to reduce the total memory requirements of the
PDFlib/PLOP DS combination. Simply generate a PDF file on disk with appropriate
PDFlib routines, and process the generated document with open_document().

Create documents in memory and digitally sign. The memory-based method is faster,
but requires more memory. The following process is recommended for dynamic PDF
generation and signature in Web applications unless you deal with very large docu-
ments:

> Instead of generating a PDF file on disk with PDFlib, use in-core PDF generation by
supplying an empty file name to PDF_begin_document().

> Fetch the generated PDF data by calling PDF_get_buffer() after PDF_end_document().
> Create a virtual file in PLOP based on the PDF data in memory by calling create_pvf().
> Pass the name of the PVF file to PLOP DS using open_document().

The hellosign programming sample which is included in all PLOP packages demon-
strates how to use PDFlib for dynamically creating a PDF document and passing it to
PLOP in memory for applying a digital signature.

Dynamically create signature visualization documents. You can also use PDFlib to dy-
namically create a document which is used for signature visualization (see Section 7.3.1,
»Visualizing Signatures with a Graphic or Logo«, page 102). This is useful if you need to
include varying text or image components in the visualization document, e.g. the cur-
rent date/time.

The dynamicsign programming sample demonstrates how to use PDFlib for dynami-
cally creating a PDF visualization document and pass it to PLOP DS for use in the signa-
ture creation process.

Form fields created with PDFlib 9.2 and earlier. When Acrobat opens a document con-
taining form fields it automatically stores a visual representation of the fields in the
PDF document if required. PDFlib 9.2 and earlier relies on this behavior and doesn’t cre-
ate the so-called appearance streams. However, since automatic appearance creation in
Acrobat modifies the document immediately upon opening it, such documents are un-
suitable for digital signing.

PLOP DS therefore rejects such documents by default (when signing in update
mode). In rewrite mode, i.e. with update=false, such documents can be signed by supply-
ing the option sacrifice={fields}. However, form fields in the input document are no long-
er present in the signed output when using this option.

There are no restrictions for form field documents created with PDFlib 9.3 or above.

Annotations created with PDFlib. If you use PDFlib to create documents with annota-
tions and subsequently sign the documents with PLOP DS, Acrobat displays the signa-
ture as valid. However, Acrobat may display »Annotations Modified« (sometimes only af-

178 Chapter B: Combining PDFlib with PLOP DS

ter validating the signatures). The reason is that upon opening the document Acrobat
silently adds a name entry to annotations that don’t already have one. Acrobat also
adds an »appearance stream«, i.e. a visual representation of the appearance. These mod-
ifications trigger the warning message regarding modifications in the document. In or-
der to avoid this confusing message do the following when creating the input docu-
ment with PDFlib:

> Supply the annotation name when creating the annotation. This can be achieved
with the name option of the PDFlib API method PDF_create_annotation().

> Supply an appearance stream (i.e. a template) with the template option and subop-
tion normal of the PDFlib API method PDF_create_annotation().

Chapter C: PLOP Library Quick Reference 179

C PLOP Library Quick Reference
The following tables contain an overview of all PLOP API methods.

General Methods

Document Input and Output

Error Handling

Global Options

pCOS Methods

Unicode Conversion

Function prototype page
(C only) PLOP *PLOP_new(void) 138
void delete() 138
void create_pvf(String filename, byte[] data, String optlist) 138
int delete_pvf(String filename) 139
double info_pvf(String filename, String keyword) 140

Function prototype page
int open_document(String filename, String optlist) 141
(C only) int PLOP_open_document_callback(PLOP *plop, void *opaque, plop_off_t filesize, size_t
(*readproc)(void *opaque, void *buffer, size_t size), int (*seekproc)(void *opaque, plop_off_t offset), const
char *optlist) 144
int create_document(String filename, String optlist) 145
void close_document(int doc, String optlist) 144
byte[] get_buffer() 148
int prepare_signature(String optlist) 152

Function prototype page
int get_errnum() 163
String get_errmsg() 163
String get_apiname() 163

Function prototype page
void set_option(String optlist) 165

Function prototype page
double pcos_get_number(int doc, String path) 169
string pcos_get_string(int doc, String path) 169
byte[] pcos_get_stream(int doc, String optlist, String path) 170

Function prototype page
string convert_to_unicode(String inputformat, byte[] input, String optlist) 172

180 Chapter D: Revision History

D Revision History

Revision history of this manual

Date Changes

May 04, 2020 > Updates for PLOP 5.4 and PLOP DS 5.4

August 28, 2018 > Changes for PLOP 5.3 and PLOP DS 5.3

December 11, 2017 > Minor updates for PLOP DS 5.2p2: clarify EC encryption support in Acrobat; sign PDFlib-
created documents containing annotations

February 17, 2017 > Minor updates for PLOP 5.2 and PLOP DS 5.2

September 30, 2016 > Changes for certificate security and minor new functionality in PLOP and PLOP DS 5.1r1

May 13, 2016 > Changes for PLOP 5.1 and PLOP DS 5.1

March 27, 2015 > Minor corrections for PLOP and PLOP DS 5.0 r1

December 04, 2014 > Changes for PLOP 5.0 and PLOP DS 5.0

September 09, 2014 > Changes for PLOP 5.0 and PLOP DS 5.0 Beta 1

March 13, 2014 > Changes for PLOP 5.0 and PLOP DS 5.0 Alpha 2

January 30, 2014 > Changes for PLOP 5.0 and PLOP DS 5.0 Alpha 1

March 04, 2011 > Major overhaul for PLOP 4.1 and PLOP DS 4.1

December 05, 2008 > Updates for XMP, PVF, and PKCS#11 (smartcard) support in PLOP 4.0 and PLOP DS 4.0

July 15, 2007 > Updates for PLOP 3.0 and PLOP DS 3.0

September 27, 2004 > Updates for PLOP 2.1

December 01, 2003 > Updated for new major release PLOP 2.0

November 23, 2002 > Added a description of the Perl binding for PSP

November 7, 2002 > Added a section on the use of PSP with ILE-RPG

October 22, 2002 > Minor changes for PSP 1.0.1

September 17, 2002 > First edition for PSP 1.0.0

Index 181

Index

Symbols
»Annotations Modified« message in Acrobat 177

A
AATL (Adobe Approved Trust List) 32, 90
Ad Ticket scheme 25
AES encryption algorithm 62
Amazon Web Services CloudHSM 96, 157
annotations in the input document 177
approval signatures 89
attachment password 61
attribute certificates 122
augmenting a signature with an archive

timestamp 133
Authenticode timestamping 122
author signatures 109
Authority Info Access (AIA) 112, 126
AWS CloudHSM 96, 157

B
BES (Basic Electronic Signature) 129
Brainpool curves for ECDSA 101
bulk signatures 97
byteserving 19

C
C binding 45
C++ binding 47
CAdES (CMS Advanced Electronic Signatures) 129,

155
CDS 91
cer certificate format 175
certificate chain 87
certificate organization in Windows 99
certificate revocation checking 88
certificate revocation list (CRL) 114
certificates 87
certification signatures 89, 109
classic .NET Binding 52
cloud-based signatures 96
CMS (Cryptographic Message Syntax) 75, 129
commitment type indication 129
critical flag in TSA certificate 122
CRL distribution point (CRLdp) 115
crt certificate format 175
cryptographic engines 93
cryptographic tokens 93, 94

D
damaged input PDFs 21
DER encoding 115
dictionary attack 63
digital IDs 87
digital signatures 27, 87
document info entries 24
Document Security Store (DSS) 108, 115, 129, 154
document-level timestamp 90, 120
DSA signature 101

E
ECDH (Elliptic Curve Diffie-Hellman key

agreement scheme) 77
ECDSA (Elliptic Curve Digital Signature Algorithm)

101
eIDAS (Electronic identification and trust services)

92, 124, 130
electronic signatures: see digital signatures
Elliptic Curve Diffie-Hellman key agreement

scheme 77
encrypted file attachments 28, 64
encryption algorithm for digital signatures 99
Enveloped Data (CMS) 75
EPES (Explicit Policy-based Electronic Signature)

129
ETSI (European Telecommunications Standards

Institute) standards 129
ETSI EN 319 142-1 (Building blocks and PAdES

baseline signatures) 130
ETSI EN 319 142-2 (Extended PAdES signatures) 130
ETSI EN 319 422 (timestamping) 118
ETSI TS 101 733 (CAdES) 129
ETSI TS 102 778 (PAdES) 129
EUTL (European Union Trust List) 32, 91
evaluation version 7
exception handling 163

in C 45
exit codes 42

F
file attachments, encrypted 64
font optimization 20
form fields in the input document 28, 177

G
garbage collection 20
Ghent Workgroup (GWG) 25

182 Index

H
Hardware Security Module (HSM) 91, 96
hash function for digital signatures 101
HSM 96

I
id-pkix-ocsp-nocheck 114
incremental PDF update 107
installing PLOP/PLOP DS 7
invalid XMP metadata 26

J
Java binding 49

K
key lengths for digital signatures 99

L
large PDF Documents 29
LDAP 126
license key 9
linearized PDF 19
long-term validation (LTV) 124, 129

M
master password 61
master permission 76
message digest for digital signatures 101
Microsoft Cryptographic API (MSCAPI) 93, 98
Modification Detection and Prevention signature

(MDP) 89
multi-threading for PKCS#11 97

N
nCipher nShield HSM 96
.NET binding 51
.NET Core binding 51
noaccessible 66
noannots 66
noassemble 66
no-check extension (OCSP) 114
nocopy 66
noforms 66
nohiresprint 66
nomaster 67
nomodify 66
noprint 66

O
object identifier (OID) 176
Objective-C binding 54
OCSP (Online Certificate Status Protocol) 112
OCSP no-check extension 114

optimization 20
optimized PDF 19
option lists 135
owner password 61

P
PAdES (PDF Advanced Electronic Signatures) 129,

155
extended signature profiles E-BES, E-EPES, E-
LTV 130
parts 129
signature levels B-B, B-T, B-LT, B-LTA 130

page-at-a-time download 19
password file for digital IDs 94
passwords 61, 62

for digital IDs 94
Unicode 62

pCOS
API methods 169
command-line tool 9, 12
Cookbook 12

PDF update 107
PDF version of the generated output 27
PDF/A 27, 28

and signatures 104
and XMP metadata 25

PDF/UA 27
PDF/VT 27, 103
PDF/X 27, 28, 103
PDFlib and PLOP/PLOP DS 177
PEM encoding 115, 175
Perl binding 56
permission settings 63
permissions password 61
PFX format 93
PHP binding 57
PKCS#11 93, 94
PKCS#12 93
plainmetadata 67
PLOP and PLOP DS command-line tool

examples 43
exit codes 42
features 17, 31
options 39

PLOP and PLOP DS library
API reference 135
features 17, 31
quick reference 179

PLOP_CATCH() 164
PLOP_close_document() 144
PLOP_convert_to_unicode() 172
PLOP_create_document() 145, 150
PLOP_create_pvf() 138
PLOP_delete_pvf() 139
PLOP_delete() 138
PLOP_EXIT_TRY() 45, 164
PLOP_get_apiname() 163
PLOP_get_buffer() 148

Index 183

PLOP_get_errmsg() 163
PLOP_get_errnum() 163
PLOP_info_pvf() 140
PLOP_new() 138
PLOP_open_document_callback() 144
PLOP_open_document() 141
PLOP_pcos_get_number() 169
PLOP_pcos_get_stream() 170
PLOP_pcos_get_string() 169
PLOP_prepare_signature() 152
PLOP_RETHROW() 164
PLOP_set_option() 165
PLOP_TRY() 164
policy identifier 129
proxy configuration 161
Python binding 59

R
RC4 encryption algorithm 62
Reader-enabled PDF 28
rectangles in option lists 136
repair mode for damaged PDFs 21
response file 41
RFC 2560 (OCSP) 112
RFC 2630 (CMS syntax) 122
RFC 3126 (signed attributes) 122
RFC 3161 (timestamping) 118
RFC 3280

(Authority Info Access for caIssuers) 126
(Authority Info Access for OCSP) 112
(CRL) 114

RFC 5126 (CAdES) 129
RFC 5280 (CRL) 114
RFC 5480 (ECDSA with NIST curves) 101
RFC 5639 (ECDSA with Brainpool curves) 101
RFC 5652 (Cryptographic Message Syntax) 75, 129
RFC 5816 (timestamping) 118
RFC 6960 (OCSP) 112
RPG binding 60
RSA signature 101
Ruby binding 60

S
sacrificing properties of the input document 27
SafeNet token 91
session handling for PKCS#11 97
SHA-256 message digest 101
signature types in PDF 88
signatures: see digital signatures
smartcards 93, 94
stream optimization 20

T
temporary disk space requirements 28
timestamp (document-level) 90, 120
Timestamp Authority (TSA) 118
TimeStamp extension 119
timestamped signature 119
timestamping 88

U
Unicode passwords 62
Unicode-capable language bindings 136
Unquoted string values in option lists 136
unused objects 20
update 107
usage rights signatures 90
user password 61

V
visualizing digital signatures 102

W
web-optimized PDF 19

X
XMP metadata 24, 25

invalid 26
plaintext 63

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

	Contents
	0 First Steps with PLOP and PLOP DS
	0.1 Installing the Software
	0.2 Applying the PLOP/PLOP DS License Key
	0.3 Roadmap to Documentation and Samples
	0.4 Overview of PLOP and PLOP DS
	0.5 What’s new in PLOP and PLOP DS?

	1 PLOP Features
	1.1 Password Security and Permissions
	1.2 Certificate Security
	1.3 Web-Optimized (Linearized) PDF
	1.4 Optimization (Size Reduction)
	1.5 Repair Mode for Damaged PDF
	1.6 Query Document Information with pCOS
	1.7 Inserting and Reading Document Info Entries
	1.8 Inserting, Reading, or Removing XMP Metadata
	1.9 PLOP Processing Details

	2 PLOP DS Features (Digital Signature)
	2.1 Signature Features in PLOP DS
	2.2 Preparations for PLOP DS Evaluation
	2.3 Signing Documents with PLOP DS
	2.4 Certification Signatures
	2.5 Timestamps
	2.6 LTV-enabled Signatures
	2.7 PAdES Signatures
	2.8 Visualize Digital Signatures
	2.9 Query Digital Signatures

	3 PLOP and PLOP DS Command-line Tool
	3.1 PLOP and PLOP DS Command-line Options
	3.2 PLOP and PLOP DS Command-line Examples

	4 PLOP and PLOP DS Library Language Bindings
	4.1 C Binding
	4.2 C++ Binding
	4.3 Java Binding
	4.4 .NET Binding
	4.4.1 .NET Binding Variants
	4.4.2 .NET Core Binding
	4.4.3 Classic .NET Binding
	4.4.4 Using the .NET Binding in Applications

	4.5 Objective-C Binding
	4.6 Perl Binding
	4.7 PHP Binding
	4.8 Python Binding
	4.9 Ruby Binding

	5 Password Security
	5.1 Password Security in PDF
	5.2 Password-protecting PDF Documents with PLOP
	5.3 Applying Password Security on the Command- Line

	6 Certificate Security
	6.1 Certificate Security in Acrobat
	6.2 Certificate Security in PDF
	6.2.1 CMS Enveloped Data
	6.2.2 Cryptographic Details

	6.3 Use Cases for Certificate Security
	6.4 Certificate Security with PLOP
	6.5 Applying Certificate Security on the Command-Line

	7 Digital Signatures with PLOP DS
	7.1 Introduction
	7.1.1 Basic Concepts of Digital Signatures
	7.1.2 Signatures in Acrobat and PDF
	7.1.3 Trusted Root Certificates in Acrobat

	7.2 Signing with PLOP DS
	7.2.1 Overview
	7.2.2 Signing with the built-in Engine
	7.2.3 PKCS#11 Engine for a cryptographic Token
	7.2.4 PKCS#11 Engine for a Hardware Security Module (HSM)
	7.2.5 Signing with the MSCAPI Engine on Windows
	7.2.6 Cryptographic Details

	7.3 PDF Aspects of Signatures
	7.3.1 Visualizing Signatures with a Graphic or Logo
	7.3.2 PDF/A, PDF/UA, PDF/X and PDF/VT Conformance
	7.3.3 Document Security Store (DSS)
	7.3.4 Signatures and incremental PDF Updates
	7.3.5 Combining Encryption with Signatures
	7.3.6 Certification Signatures

	7.4 Certificate Revocation Information
	7.4.1 Online Certificate Status Protocol (OCSP)
	7.4.2 Certificate Revocation Lists (CRLs)
	7.4.3 OCSP or CRL?

	7.5 Timestamps
	7.5.1 Timestamp Configuration
	7.5.2 Timestamped Signatures
	7.5.3 Document-Level Timestamp Signatures
	7.5.4 Troubleshooting and Unsupported TSA Types

	7.6 Long-Term Validation (LTV)
	7.6.1 LTV Concept and Acrobat Support
	7.6.2 LTV-enabled Signatures with PLOP DS

	7.7 The CAdES and PAdES Signature Standards
	7.7.1 CMS and CAdES Signatures
	7.7.2 PAdES Signatures with PLOP DS

	8 PLOP and PLOP DS Library API Reference
	8.1 Option Lists
	8.2 General Functions
	8.3 Input Functions
	8.4 Output Functions
	8.5 Certificate Security
	8.6 Digital Signatures
	8.7 Exception Handling
	8.8 Global Options
	8.9 Logging
	8.10 pCOS Functions
	8.11 Unicode Conversion Function

	A Working with Certificates
	B Combining PDFlib with PLOP DS
	C PLOP Library Quick Reference
	D Revision History
	Index

